ДОМАШНИЙ БИЗНЕС

БИЗНЕС БЕЗ ВЛОЖЕНИЙ

БИЗНЕС ДЛЯ ЖЕНЩИН

МАЛЫЙ БИЗНЕС

БИЗНЕС-ПЛАН

ИДЕИ ДЛЯ БИЗНЕСА

БИЗНЕС-СОВЕТЫ

БИЗНЕСМЕНАМ

ИНТЕРНЕТ-БИЗНЕС

5 новейших открытий медицины, которые скоро изменят мир к лучшему. Открыть медицина


Самые последние достижения медицины

Невероятные факты

Человеческое здоровье напрямую касается каждого из нас.

Средства массовой информации изобилуют рассказами о нашем здоровье и теле, начиная созданием новых лекарственных препаратов и заканчивая открытиями уникальных методов хирургии, которые дают надежду инвалидам.

Ниже мы расскажем о самых свежих достижениях современной медицины.

Последние достижения медицины

10. Учёные идентифицировали новую часть тела

Ещё в 1879 году французский хирург по имени Пол Сегон (Paul Segond) описал в одном из своих исследований "жемчужную, устойчивую волокнистую ткань", проходящую вдоль связок в колене человека.

10.jpg

Об этом исследовании благополучно забыли до 2013 года, когда учёные обнаружили переднебоковую связку, коленную связку, которая часто повреждается при возникновении травм и других проблем.

Учитывая, как часто сканируется колено человека, открытие было сделано очень поздно. Оно описано в журнале "Анатомия" и опубликовано он-лайн в августе 2013 года.

10-1.jpg

Авторы исследования изучили 41 пару коленей и нашли новую связку во всех, кроме одной пары, придя к выводу, что новая часть тела – это чётко различимая ткань со своей выверенной структурой.

Ранее в текущем году учёные опубликовали в журнале "Офтальмология" открытие ещё одной новой части тела, обнаруженной в глазу. Речь идёт о микроскопическом слое роговицы, который назвали "слой Дуа".

9. Интерфейс мозг-компьютер

9.jpg

Учёные, работающие в Корейском университете и Технологическом университете Германии, разработали новый интерфейс, который даёт возможность пользователю управлять экзоскелетом нижних конечностей.

Он работает с помощью декодирования конкретных мозговых сигналов. Результаты исследования были опубликованы в августе 2015 года в журнале "Нейронная инженерия".

Читайте также: Самые странные методы лечения в истории медицины

Участники эксперимента носили электроэнцефалограммовый головной убор и управляли экзоскелетом, просто смотря на один из пяти светодиодов, установленных на интерфейсе. Это заставляло экзоскелет двигаться вперёд, поворачивать направо или налево, а также сидеть или стоять.

9-1.jpg

Пока система была протестирована лишь на здоровых добровольцах, но есть надежда, что в конечном итоге её можно будет использовать, чтобы помочь инвалидам.

Соавтор исследования Клаус Мюллер (Klaus Muller) объяснил, что "люди с боковым амиотрофическим склерозом или с травмами спинного мозга часто сталкиваются с трудностями в общении и в контролировании своих конечностей; расшифровка их мозговых сигналов такой системой предлагает решение обеих проблем".

Достижения науки в медицине

8. Устройство, которое может двигать парализованную конечность силой мысли

8.jpg

В 2010 году Яна Беркхарта (Ian Burkhart) парализовало, когда во время несчастного случая в бассейне он сломал себе шею. В 2013 году благодаря совместным усилиям специалистов университета штата Огайо и Баттелль, мужчина стал первым в мире человеком, который теперь может обойти свой спинной мозг и двигать конечностью, используя только силу мысли.

Прорыв случился благодаря использованию нового вида электронного нервного байпаса, устройства размером с горошину, которое имплантируется в моторную кору головного мозга человека.

Чип интерпретирует сигналы мозга и передаёт их на компьютер. Компьютер считывает сигналы и посылает их на специальный рукав, который носит пациент. Таким образом, нужные мышцы приводятся в действие.

Весь процесс занимает доли секунды. Однако, чтобы добиться такого результата, команде пришлось изрядно потрудиться. Команда технологов сначала выяснила точную последовательность электродов, которая позволяла Беркхарту двигать рукой.

Затем мужчине пришлось проходить несколько месяцев терапию для восстановления атрофированных мышц. Конечным результатом является то, что теперь он может вращать рукой, сжимать её в кулак, а также на ощупь определять, что перед ним находится.

7. Бактерия, которая питается никотином и помогает курильщикам завязать с пагубной привычкой

7.jpg

Бросить курить – это чрезвычайно трудная задача. Любой, кто пытался это сделать, подтвердит сказанное. Почти 80 процентов тех, кто пробовал это совершить с помощью аптечных препаратов, претерпел неудачу.

В 2015 году учёные из научно-исследовательского института Скриппса дают новую надежду желающим бросить. Им удалось выявить бактериальный фермент, который поедает никотин ещё до того, как он успевает добраться до мозга.

Читайте также: 10 ужаснейших медицинских практик древности, от которых мы, к счастью, отказались

Фермент принадлежит бактерии Pseudomonas putida. Данный фермент не является новейшим открытием, однако, его только недавно удалось вывести в лабораторных условиях.

Исследователи планируют использовать этот фермент для создания новых методов отказа от курения. Блокируя никотин прежде, чем он достигнет мозга и вызовет производство допамина, они надеются, что они смогут отбить у курильщика желание взять в рот сигарету.

7-1.jpg

Чтобы стать работоспособной, любая терапия должна быть достаточно стабильной, не вызывая во время активности дополнительных проблем. В настоящее время произведенный в лабораторных условиях фермент ведёт себя стабильно в течение более трёх недель, находясь в буферном растворе.

Тесты с участием лабораторных мышей не показали никаких побочных эффектов. Учёные опубликовали результаты своего исследования в он-лайн версии августовского номера журнала "Американское химическое сообщество".

6. Универсальная вакцина против гриппа

6.jpg

Пептиды – это короткие цепочки аминокислот, которые существует в клеточной структуре. Они выступают в качестве основного строительного блока для белков. В 2012 году учёным, работавшим в университете Саутгемптона, Оксфордском университете и лаборатории вирусологии Ретроскин, удалось выявить новый набор пептидов, найденных у вируса гриппа.

Это может привести к созданию универсальной вакцины против всех штаммов вируса. Результаты были опубликованы в журнале Nature Medicine.

В случае гриппа пептиды на внешней поверхности вируса очень быстро мутируют, что делает их почти недосягаемыми для вакцин и лекарств. Недавно обнаруженные пептиды живут во внутренней структуре клетки и мутируют довольно медленно.

6-1.jpg

Более того, эти внутренние структуры можно обнаружить в каждом штамме гриппа, начиная от классического и заканчивая птичьим. Для разработки современной вакцины от гриппа требуется около шести месяцев, однако, она не обеспечивает иммунитетом на долгое время.

Тем не менее, возможно, сориентировав усилия на работе внутренних пептидов, создать универсальную вакцину, которая даст долговременную защиту.

Грипп – это вирусное заболевание верхних дыхательных путей, которое поражает нос, горло и лёгкие. Оно может быть смертельно опасным, особенно если заразился ребёнок или пожилой человек.

6-2.jpg

Штаммы гриппа ответственны за несколько пандемий на протяжении всей истории, самая страшная из которых, - пандемия 1918 года. Никто не знает наверняка, сколько людей погибло от этой болезни, но по некоторым оценкам, 30-50 миллионов человек во всем мире.

Новейшие медицинские достижения

5. Возможное лечение болезни Паркинсона

5.jpg

В 2014 году учёные взяли искусственные, но полностью функционирующие человеческие нейроны и успешно привили их в мозг мышам. У нейронов есть потенциал для лечения и даже вылечивания таких заболеваний, как болезнь Паркинсона.

Нейроны были созданы группой специалистов из института Макса Планка, университетской клиники Мюнстера и университета Билефельда. Учёным удалось создать стабильную нервную ткань из нейронов, перепрограммированных из клеток кожи.

5-1.jpg

Другими словами, они индуцировали нейронные стволовые клетки. Это метод, который увеличивает совместимость новых нейронов. Спустя шесть месяцев у мышей не развилось никаких побочных эффектов, а имплантированные нейроны отлично интегрировались с их мозгом.

Грызуны продемонстрировали нормальную мозговую деятельность, в результате которой сформировались новые синапсы.

5-2.jpg

У новой методики есть потенциал, который может дать нейрологам возможность заменить больные, поврежденные нейроны здоровыми клетками, которые в один прекрасный день смогут справиться с болезнью Паркинсона. Из-за неё нейроны, поставляющие допамин, умирают.

Читайте также: 10 невероятных историй чудес в медицине

На сегодняшний день никакого лечения от этого заболевания нет, но симптомы поддаются лечению. Болезнь, как правило, развивается у людей в возрасте 50-60 лет. При этом мышцы становятся жёсткими, происходят изменения в речи, меняется походка и появляется тремор.

4. Первый в мире бионический глаз

4.jpg

Пигментный ретинит является наиболее распространённым среди наследственных заболеваний глаз. Он приводит к частичной потере зрения, а зачастую и к полной слепоте. К ранним симптомам относится потеря ночного видения и трудности с периферийным зрением.

В 2013 году была создана система протезирования сетчатки Argus II, первый в мире бионический глаз, предназначенный для лечения запущенной стадии пигментного ретинита.

Система Argus II – это пара наружных стёкол, оснащённых камерой. Изображения преобразуются в электрические импульсы, которые передаются электродам, имплантированным в сетчатку глаза пациента.

Эти изображения головным мозгом воспринимаются как световые шаблоны. Человек учится интерпретировать эти паттерны, постепенно восстанавливая зрительное восприятие.

В настоящее время система Argus II пока доступна только на территории США и Канады, но есть планы по её внедрению во всём мире.

Новые достижения в области медицины

3. Обезболивающее, которое работает только за счёт света

3.jpg

Сильную боль традиционно лечат опиоидными препаратами. Основной недостаток в том, что многие такие препараты могут вызывать привыкание, поэтому потенциал для злоупотреблений у них огромен.

А что если учёные смогли бы останавливать боль не используя ничего, кроме света?

В апреле 2015 года неврологи Вашингтонской медицинской школы при университете в Сент-Луисе объявили, что им удалось это сделать.

3-1.jpg

Путём соединения свето-чувствительного белка с опиоидными рецепторами в пробирке, они смогли активировать опиоидные рецепторы также, как это делают опиаты, но только с помощью света.

Результаты своих опытов они опубликовали он-лайн в журнале Neuron.

Есть надежда, что эксперты смогут разработать способы использования света для облегчения боли при применении лекарств с меньшими побочными эффектами. Согласно исследованиям Эдварда Сиуда (Edward R. Siuda), вполне вероятно, что после дополнительных экспериментов, свет сможет полностью заменить лекарства.

3-2.jpg

Для тестирования нового рецептора светодиодный чип размером примерно с человеческий волос был имплантирован в мозг мыши, который после этого связали с рецептором. Мышей помещали в камеру, где их рецепторы стимулировали на выработку допамина.

Если мыши уходили из специальной отведённой зоны, то свет выключали и стимулирование останавливалось. Грызуны быстро возвращались на место.

2. Искусственные рибосомы

2.jpg

Рибосома – это молекулярная машина, состоящая из двух субъединиц, которые используют аминокислоты из клеток, чтобы создавать белки.

Каждая из субъединиц рибосом синтезируется в ядре ячейки, а затем экспортируется в цитоплазму.

В 2015 году исследователи Александр Мэнкин (Alexander Mankin) и Майкл Джеветт (Michael Jewett) смогли создать первую в мире искусственную рибосому. Благодаря этому у человечества появился шанс узнать новые подробности о работе этой молекулярной машины.

Читайте также: Какой будет медицина в 2020 году?

Она также сможет послужить основой для создания лекарственных препаратов и биологических материалов будущего.

Результаты исследования они опубликовали в электронной версии журнала Science.

Согласно этому документу, искусственная рибосома, называемая "рибо-Т", продолжает функционировать после введении клетки E.coli, даже при отсутствии "диких" рибосом, сохраняя бактерии живыми и демонстрируя их способность к размножению.

2-1.jpg

В отличие от обычных рибосом рибо-Т не разделяются, что до сих пор считалось неотъемлемой частью белкового синтеза. Рибо-Т учит нас новым аспектам работы рибосомы.

"Наша новая, создающая белок система, обещает расширить генетический код уникальным, преобразующим образом, предоставляя тем самым захватывающие возможности для синтетической биологии и биомолекулярной инженерии", - делится Майкл Джеветт.

1. Двусторонний трансплантат рук

1.jpg

Врачи детской больницы в Филадельфии вошли в историю, когда ранее в текущем году успешно пересадили две донорские кисти рук и предплечья 8-летнему Циону Харви (Zion Harvey). Харви пережил пересадку почки и двойную ампутацию после перенесения в 2-летнем возрасте серьёзной инфекции.

Донорские конечности были куплены в рамках программы некоммерческой организации Gift of Life Donor Program. Хирургическая бригада собрала воедино кости, кровеносные сосуды, нервы, сухожилия и кисти рук во время сложнейшей 10-часовой операции, которая была проведена в июле текущего года.

Таким образом, Харви стал первым ребёнком в мире, прошедшим процедуру по двухсторонней трансплантации рук. В настоящее время мальчик нуждается в ежедневных иммунодепрессантах, а также он проходит физиотерапию, чтобы максимально восстановить функциональность кистей.

Как и в случае с другими рецепиентами донорских органов, Харви будет вынужден до конца жизни принимать лекарственные препараты и проходить терапию, чтобы минимизировать риск отторжения донорской ткани. 

Перевод: Баландина Е. А.

www.infoniac.ru

Открытия в медицине, о которых каждый должен знать

Открытия в медицине совершаются с завидным постоянством. Чтобы в здравом уме и твёрдой памяти  дожить до глубокой старости, важно внимательно следить за наиболее значимыми из них. Представляем подборку наиболее интересных и неожиданных исследований  в области здоровья.

 

Бросить курить поможет особая бактерия!

Попытки бросить курить в 80-90% случаев заканчиваются полным фиаско. Учёные Научно-исследовательского института Скриппса предложили использовать в качестве одного из ингредиентов для борьбы с пагубной привычкой особую бактерию, способную уничтожать никотин прежде, чем он достигнет мозга и активизирует производство допамина – гормона, ответственного за появление никотиновой зависимости.

 

Вылечить алкоголизм помогут плоды конфетного дерева

Интересный способ избавиться от похмелья и вылечить алкоголизм предложили исследователи Калифорнийского университета (США, Лос-Анджелес). Из плодов китайского подвида конфетного дерева они выделили вещество, получившее название дигидромирицетин, и проверили его действие на лабораторных крысах. Грызунам 3 месяца подряд вводили убойную дозу алкоголя. Крысы, получавшие ещё и дигидромирицетин, не только быстро восстанавливали координацию, но и не испытывали тяги к спиртному! Любопытно, что китайская народная медицина использует плоды конфетного дерева для избавления от похмелья на протяжении вот уже 500 лет.

 

Открыт универсальный антибиотик

С момента изобретения первого антибиотика человечество вступило в гонку: пока микробы приспосабливаются к одним препаратам, учёные лихорадочно пытаются найти другие. Это действительно гонка на выживание, так как каждые 20 минут появляется новое поколение микробов. Открытие специалистов Северо-восточного бостонского университета, возможно, позволит поставить точку в этой борьбе. Универсальный антибиотик теиксобактин, выращенный из почвенных микроорганизмов, не только уничтожает почти все виды грамположительных бактерий (даже возбудителей туберкулёза), но и блокирует их способность производить новые клетки.  

 

Омоложение организма изнутри – это возможно!

Профессор Технологического университета г. Токио Ёсинори Осуми недавно получил Нобелевскую премию за описание механизма внутреннего самоочищения организма. Учёный обнаружил гены, уничтожающие «мусор» из клеток – повреждённые белки и органеллы, из-за которых развивается процесс старения. Существует предположение, что развитие болезни Паркинсона, сахарного диабета 2 типа, рака и некоторых других заболеваний связано с нарушением процесса самоочищения клетки. Открытие японского учёного, возможно, позволит влиять на эти процессы.

 

Лечение рака ультразвуком!

Специалисты Университетского колледжа Лондона предприняли попытку воздействовать на раковую опухоль простаты высокоинтенсивными направленными звуковыми волнами. Злокачественные клетки нагревались до 80-90°С  и разрушались. Здоровые ткани при этом практически не повреждались. У 95% пациентов через год наблюдалось полное излечение. Не было зафиксировано ни одного случая рецидива заболевания. Обычные побочные эффекты противораковой терапии, такие как недержание мочи, нарушение эрекции, также не отмечались.

 

Найдено средство борьбы с гормональными нарушениями

Российские учёные исследовали органическое вещество, способное стимулировать выработку половых гормонов в организме, и уже с успехом применили его для лечения постменопаузального остеопороза. Гомогенат тутневого расплода стал основой безопасных остеопротекторов нового поколения. До этого гормональные нарушения устраняли только синтетическими заменителями человеческих гормонов, длительное применение которых даёт массу побочных эффектов — от бесплодия до рака.

Наука не стоит на месте. Возможно, тот день, когда учёные поведают миру рецепт вечной молодости, гораздо ближе, чем мы думаем. Во всяком случае, открытия в медицине последних лет вселяют в душу определённый запас оптимизма.   

ПОЛЕЗНО УЗНАТЬ:

О ЗАБОЛЕВАНИЯХ СУСТАВОВ

Посттравматический артроз – мина замедленного действия. Диагностика и лечение заболевания суставов

Суставные заболевания принято считать возрастными, однако у молодого человека тоже может проявиться одно из таких расстройств. И чаще всего причиной тому служит травма. Посттравматический артроз знаком огромному числу людей от 20 до 50 лет. Его лечение мало отличается от терапии других видов артроза, но все же есть некоторые нюансы.   Причины заболевания: травма сустава, воспаления…

Читать далее

Анализы на гормоны щитовидной железы. Когда их назначают, и о каких заболеваниях они могут рассказать?

Анализы на гормоны щитовидной железы необходимы для определения состояния одного из важнейших эндокринных органов, являющегося регулятором обменных процессов. Болезни щитовидной железы выявляются практически у каждого второго жителя земного шара, что совсем неудивительно, учитывая экологическую обстановку в городах и далеко не здоровый образ жизни современного человека. В этой связи проведение подобных исследований с каждым годом приобретает…

Читать далее

О ЗАБОЛЕВАНИЯХ КОСТЕЙ

Сосудистые препараты помогают восстановить кости при остеопорозе. Исследования российских ученых

Сосудистые препараты являются эффективным средством в борьбе с остеопорозом. К такому выводу пришла группа российских ученых под руководством доктора медицинских наук Александра Владимировича Файтельсона. Результаты их исследования, проведенного 6 лет назад, были отображены в научной статье «Фармакологическая коррекция экспериментального остеопороза комбинацией ресвератрола с эналаприлом». Статья опубликована в 4-м номере журнала «Научные ведомости Белгородского государственного университета»…

Читать далее

Хронический пародонтит у женщин – приговор или бедствие, которое можно предотвратить?

Хронический пародонтит  – заболевание, которое подстерегает каждого. У 80 % населения Земли его можно диагностировать, – гласят данные Всемирной организации здравоохранения. После 40 лет нарушения в тканях пародонта фиксируются у всех поголовно. Однако больше всех страдают от пародонтита женщины, перешагнувшие рубеж репродуктивного возраста. Именно это заболевание в 5 раз чаще приводит к вставной челюсти, чем…

Читать далее

О ВИТАМИНАХ ДЛЯ КОСТЕЙ

Витамин Д в продуктах: солнечное ассорти

Витамин Д в продуктах питания – часть того витаминного минимума, который в обязательном порядке должен поступать в наш организм из внешней среды. Это высокомолекулярное жирорастворимое соединение, в образовании которого участвует излучение солнца. Он играет ключевую роль в построении костного фундамента организма и необходим для здоровой работы нервов, желез внутренней секреции, иммунитета. Формируемый внутри самого тела…

Читать далее  

 

osteomed.su

10 важных медицинских прорывов и открытий 2015 года

Прошедший год для науки был очень плодотворным. Особенного прогресса ученые достигли в сфере медицины. Человечество совершило удивительные открытия, научные прорывы и создало множество полезных медикаментов, которые непременно в скором времени окажутся в свободном доступе. Предлагаем ознакомиться с десяткой самых удивительных медицинских прорывов 2015 года, которые обязательно внесут серьезный вклад в развитие медицинских услуг в самое ближайшее время.

Открытие теиксобактина

В 2014 году Всемирная организация здравоохранения предупредила всех о том, что человечество вступает в так называемую постантибиотическую эру. И ведь она оказалась правой. Наука и медицина аж с 1987 не производили действительно новых видов антибиотиков. Однако болезни не стоят на месте. Каждый год появляются новые заразы, более устойчивые к существующим медикаментам. Это стало настоящей мировой проблемой. Тем не менее в 2015 году ученые совершили открытие, которое, по их мнению, привнесет кардинальные перемены.

Ученые открыли новый класс антибиотиков из 25 противомикробных препаратов, включая очень важный, получивший название теиксобактин. Этот антибиотик уничтожает микробов, блокируя их способность производить новые клетки. Другими словами, микробы под воздействием этого лекарства не могут развиваться и вырабатывать со временем устойчивость к препарату. Теиксобактин к настоящему моменту доказал свою высокую эффективность в борьбе с резистентным золотистым стафилококком и несколькими бактериями, вызывающими туберкулез.

Лабораторные испытания теиксобактина проводились на мышах. Подавляющее большинство экспериментов показали эффективность препарата. Человеческие испытания должны начаться в 2017 году.

Медики вырастили новые голосовые связки

Одно из самых интересных и перспективных направлений в медицине является регенерация тканей. В 2015 году список воссозданных искусственным методом органов пополнился новым пунктом. Врачи из Висконсинского университета научились выращивать человеческие голосовые связки фактически из ничего.

Группа ученых под руководством доктора Натана Вельхэна биоинженерным способом создала ткань, способную имитировать работу слизистой оболочки голосовых связок, а именно ту ткань, которая представляется двумя лепестками связок, которые вибрируя позволяют создавать человеческую речь. Клетки-доноры, из которых впоследствии были выращены новые связки, были взяты у пяти пациентов-добровольцев. В лабораторных условиях за две недели ученые вырастили необходимую ткань, после чего добавили ее к искусственному макету гортани.

Создаваемый полученными голосовыми связками звук, ученые описывают как металлический и сравнивают его со звуком роботизированного казу (игрушечный духовой музыкальный инструмент). Однако ученые уверены в том, что созданные ими голосовые связки в реальных условиях (то есть при имплантации в живой организм) будут звучать почти как настоящие.

В рамках одного из последних экспериментов на лабораторных мышах с привитым человеческим иммунитетом исследователи решили проверить, будет ли организм грызунов отторгать новую ткань. К счастью, этого не случилось. Доктор Вельхэм уверен, что ткань не будет отторгаться и человеческим организмом.

Лекарство от рака может помочь и пациентам с болезнью Паркинсона

Тисинга (или нилотиниб) является проверенным и одобренным лекарством, которое обычно используют для лечения людей с признаками лейкемии. Однако новое исследование, проведенное медицинским центром Джорджтаунского университета, показывает, что лекарство Тасинга может являться очень сильным средством для контроля моторных симптомов у людей с болезнью Паркинсона, улучшая их моторные функции и контролируя немоторные симптомы этой болезни.

Фернандо Паган, один из докторов, проводивших данное исследование, считает, что нилотинибная терапия может являться первым в своем роде эффективным методом снижения деградации когнитивных и моторных функции у пациентов с нейродегенеративными заболеваниями, такими как болезнь Паркинсона.

Ученые в течение шести месяцев давали увеличенные дозы нилотиниба 12 пациентам-добровольцам. У всех 12 пациентов, прошедших данное испытание препарата до конца, наблюдалось улучшение моторных функций. У 10 из них отметили значительное улучшение.

Основной задачей данного исследования была проверка безопасности и безвредности нилотиниба на человеческий организм. Используемая доза препарата была гораздо меньше той дозы, которая обычно дается пациентам с лейкемией. Несмотря на то, что препарат показал свою эффективность, исследование все же проводилось на небольшой группе людей без привлечения контрольных групп. Поэтому перед тем, как Тасингу начнут использовать в качестве терапии болезни Паркинсона, придется провести еще несколько испытаний и научных исследований.

Первая в мире 3D-напечатанная грудная клетка

Последние несколько лет технология 3D-печати проникает во многие сферы, приводя к удивительным открытиям, разработкам и новым методам производства. В 2015 году доктора из университетского госпиталя Саламанка в Испании провели первую в мире операцию по замене поврежденной грудной клетки пациента на новый 3D-напечатанный протез.

Человек страдал редким видом саркомы, и у врачей не осталось другого выбора. Чтобы избежать распространение опухоли дальше по организму, специалисты удалили у человека почти всю грудину и заменили кости титановым имплантатом.

Как правило, имплантаты для крупных отделов скелета производят из самых разных материалов, которые со временем могут изнашиваться. Помимо этого, замена столь сложного сочленения костей, как кости грудины, которые, как правило, уникальны в каждом отдельном случае, потребовала от врачей провести тщательное сканирование грудины человека, чтобы разработать имплантат нужного размера.

В качестве материала для новой грудины было решено использовать титановый сплав. После проведения высокоточной трехмерной компьютерной томографии, ученые использовали принтер Arcam стоимостью 1,3 миллиона долларов и создали новую титановую грудную клетку. Операция по установке новой грудины пациенту прошла успешно, и человек уже прошел полный курс реабилитации.

Из клеток кожи в клетки мозга

Ученые из калифорнийского Института Солка в Ла-Холья посвятили ушедший год исследованиям человеческого мозга. Они разработали метод трансформирования клеток кожи в мозговые клетки и уже нашли несколько полезных сфер применения новой технологии.

Следует отметить, что ученые нашли способ превращения кожных клеток в старые мозговые клетки, что упрощает дальнейшее их использование, например, при исследованиях болезней Альцгеймера и Паркинсона и их взаимосвязи с эффектами, вызываемыми старением. Исторически сложилось, что для таких исследований применялись клетки мозга животных, однако ученые в этом случае были ограничены в своих возможностях.

Относительно недавно ученые смогли превратить стволовые клетки в клетки мозга, которые можно использовать для исследований. Однако это довольно трудоемкий процесс, и на выходе получаются клетки, не способные имитировать работу мозга пожилого человека.

Как только исследователи разработали способ искусственного создания клеток мозга, они направили свои усилия на создание нейронов, которые обладали бы возможностью производства серотонина. И хотя полученные клетки обладают лишь крошечной долей возможностей работы человеческого мозга, они активно помогают ученым в исследованиях и поиске лекарств от таких болезней и расстройств, как аутизм, шизофрения и депрессия.

Противозачаточные таблетки для мужчин

Японские ученые из Научно-исследовательского института исследований микробных заболеваний в Осаке опубликовали новую научную работу, согласно которой в недалеком будущем мы сможем производить реально действующие противозачаточные таблетки для мужчин. В своей работе ученые описывают исследования препаратов «Такролимус» и «Цикслоспорин А».

Обычно эти лекарства используются после проведения операций по трансплантации органов для подавления иммунной системы организма, чтобы та не отторгала новую ткань. Блокада происходит благодаря ингибированию производства энзима кальцинейрина, который содержит белки PPP3R2 и PPP3CC, обычно имеющиеся в мужском семени.

В своем исследовании на лабораторных мышах ученые обнаружили, что как только в организмах грызунов производится недостаточно белка PPP3CC, то их репродуктивные функции резко сокращаются. Это натолкнуло исследователей к выводу, что недостаточный объем этого белка может привести к стерильности. После более тщательного изучения специалисты заключили, что данный белок дает клеткам спермы гибкость и необходимые силу и энергию для проникновения через мембрану яйцеклетки.

Проверка на здоровых мышах только подтвердила их открытие. Всего пять дней применения препаратов «Такролимус» и «Цикслоспорин А» привело к полной бесплодности мышей. Однако их репродуктивная функция полностью восстановилась всего через неделю после того, как им перестали давать эти препараты. Важно отметить, что кальцинейрин не является гормоном, поэтому применение препаратов никоим образом не снижает половое влечение и возбудимость организма.

Несмотря на многообещающие результаты, потребуется несколько лет для создания реальных мужских противозачаточных таблеток. Около 80 процентов исследований на мышах не применимы для человеческих случаев. Однако ученые по-прежнему надеются на успех, так как эффективность препаратов была доказана. Кроме того, аналогичные препараты уже прошли человеческие клинические испытания и широко используются.

Печать ДНК

Технологии 3D-печати привели к появлению уникальной новой индустрии — печати и продаже ДНК. Правда, термин «печать» здесь скорее используется именно для коммерческих целей, и необязательно описывает то, что же в этой сфере происходит на самом деле.

Исполнительный директор компании Cambrian Genomics объясняет, что данный процесс лучше всего описывает фраза «проверка на ошибки», нежели «печать». Миллионы частей ДНК помещаются на крошечные металлические подложки и сканируются компьютером, который отбирает те цепи, которые в конечном итоге должны будут составлять всю последовательность ДНК-цепочки. После этого лазером аккуратно вырезаются нужные связи и помещаются в новую цепочку, предварительно заказанную клиентом.

Такие компании, как Cambrian, считают, что в будущем люди смогут благодаря специальному компьютерному оборудованию и программному обеспечению создавать новые организмы просто для развлечения. Конечно же, такие предположения сразу же вызовут праведный гнев людей, сомневающихся в этической корректности и практической пользе данных исследований и возможностей, но рано или поздно, как бы мы этого хотели или не хотели, мы к этому придем.

Сейчас же ДНК-печать демонстрирует немногообещающий потенциал в медицинской сфере. Производители лекарств и исследовательские компании — вот список первых клиентов таких компаний, как Cambrian.

Исследователи из Каролинского института в Швеции пошли еще дальше и начали создавать из ДНК-цепочек различные фигурки. ДНК-оригами, как они это называют, может на первый взгляд показаться обычным баловством, однако практический потенциал использования у этой технологии тоже имеется. Например, его можно будет применять при доставке лекарственных средств в организм.

Наноботы в живом организме

В начале 2015 года сфера робототехники одержала большую победу, когда группа исследователей из Калифорнийского университета в Сан-Диего объявила о том, что провела первые успешные тесты с применением наноботов, которые выполнили поставленную перед ними задачу, находясь внутри живого организма.

Живым организмом в данном случае выступали лабораторные мыши. После помещения наноботов внутрь животных микромашины направились к желудкам грызунов и доставили помещенный на них груз, в качестве которого выступали микроскопические частички золота. К концу процедуры ученые не отметили никаких повреждений внутренних органов мышей и тем самым подтвердили полезность, безопасность и эффективность наноботов.

Дальнейшие тесты показали, что доставленных наноботами частичек золота в желудках остается больше, чем тех, которые были просто введены туда с приемом пищи. Это натолкнуло ученых на мысль о том, что наноботы в будущем смогут гораздо эффективные доставлять нужные лекарства внутрь организма, чем при более традиционных методах их введения.

Моторная цепь крошечных роботов состоит из цинка. Когда она попадает в контакт с кислотно-щелочной средой организма, происходит химическая реакция, в результате которой производятся пузырьки водорода, которые и продвигают наноботов внутри. Спустя какое-то время наноботы просто растворяются в кислотной среде желудка.

Несмотря на то, что данная технология разрабатывается уже почти десятилетие, только в 2015 году ученые смогли провести ее фактические тесты в живой среде, а не обычных чашках Петри, как делалось много раз до этого. В будущем наноботов можно будет использовать для определения и даже лечения различных болезней внутренних органов, путем воздействия нужными лекарствами на отдельные клетки.

Инъекционный мозговой наноимплантат

Группа ученых из Гарварда разработала имплантат, обещающий возможность лечения ряда нейродегенеративных расстройств, которые приводят к параличу. Имплантат представляет собой электронное устройство, состоящее из универсального каркаса (сетки), к которому в дальнейшем можно будет подсоединять различные наноустройства уже после введения его в мозг пациента. Благодаря имплантату можно будет следить за нейронной активностью мозга, стимулировать работу определенных тканей, а также ускорять регенерацию нейронов.

Электронная сетка состоит из проводящих полимерных нитей, транзисторов или наноэлектродов, которые соединяют между собой пересечения. Почти вся площадь сетки состоит из отверстий, что позволяет живым клеткам образовывать новые соединения вокруг нее.

К началу 2016 года команда ученых из Гарварда по-прежнему проводит тесты безопасности использования подобного имплантата. Например, двум мышам имплантировали в мозг устройство, состоящее из 16 электрических компонентов. Устройства успешно используются для мониторинга и стимуляции определенных нейронов.

Искусственное производство тетрагидроканнабинола

Многие годы марихуана использовалась в медицине в качестве обезболивающего средства и в частности для улучшения состояний больных раком и СПИДом. В медицине также активно используется и синтетический заменитель марихуаны, а точнее ее основного психоактивного компонента тетрагидроканнабинола (или THC).

Однако биохимики из Технического университета Дортмунда объявили о создании нового вида дрожжевого грибка, производящего THC. Более того, по неопубликованным данным известно, что эти же ученые создали еще один вид дрожжевого грибка, который производит каннабидиол, другой психоактивный компонент марихуаны.

В марихуане содержится сразу несколько молекулярных соединений, которые интересуют исследователей. Поэтому открытие эффективного искусственного способа создания этих компонентов в больших количествах могло бы принести медицине огромную пользу. Однако метод обычного выращивания растений и последующая добыча необходимых молекулярных соединений является сейчас наиболее эффективным способом. Внутри 30 процентов сухой массы современных видов марихуаны может содержаться нужный компонент THC.

Несмотря на это, дортмундские ученые уверены, что смогут найти более эффективный и быстрый способ добычи THC в будущем. К настоящему моменту созданный дрожжевой грибок повторно выращивается на молекулах такого же грибка вместо предпочтительной альтернативы в виде простых сахаридов. Все это приводит к тому, что с каждой новой партией дрожжей уменьшается и количество свободного компонента THC.

В будущем ученые обещают оптимизировать процесс, максимизировать производство THC и увеличить масштабы до индустриальных нужд, что в конечном итоге удовлетворит нужды медицинских исследований и европейских регуляторов, которые ищут новый способы производства тетрагидроканнабинола без выращивания самой марихуаны.

hi-news.ru

5 новейших открытий медицины, которые скоро изменят мир к лучшему

Сегодняшний мир стал очень технологичным. И медицина старается держать марку. Новые достижения все плотнее связаны с генной инженерией, клиники и врачи уже во всю применяют «облачные технологии», а пересадка 3D-органов в скором времени обещает стать обычной практикой.

Борьба с онкологией на генетическом уровне

На первом месте рейтинга – медицинский проект от компании Google. Дочерний фонд компании под названием Google Ventures инвестировал $130 млн в «облачный» проект «Flatiron», направленный на борьбу с онкологией в медицине. Проект ежедневно собирает и анализирует сотни тысяч данных о случаях раковых заболеваний, передавая выводы врачам.

По словам директора Google Ventures Билла Мариса в скором времени лечение раковых заболеваний будет проходить на генетическом уровне, а химиотерапия через 20 лет станет примитивной, как сегодня дискета или телеграф.

Беспроводные технологии в медицине

Браслеты здоровья или «умные часы» – хороший пример того, как современные технологии в медицине помогают людям быть здоровыми. Посредством привычных устройств каждый из нас может контролировать сердечные ритмы, артериальное давление, измерять шаги и количество сброшенных калорий.

В некоторых моделях браслетов предусмотрена передача данных «в облако» для дальнейшего анализа врачами. В сети интернет можно загрузить десятки программ для контроля здоровья, например, Google Fit или HealthKit.

Компания AliveCor пошла еще дальше и предложила устройство, которое синхронизируется со смартфоном и позволяет делать снимок ЭКГ в домашних условиях. Прибор представляет собой чехол со специальными датчиками. Данные снимка через интернет поступают к лечащему врачу.

Восстановление слуха и зрения

Кохлеарный имплант для восстановления слуха

В 2014 году австралийские ученые предложили способ лечения слуха на генетическом уровне. Медицинский метод основан на том, чтобы безболезненно внедрить в организм человека ДНК-содержащий препарат, внутри которого «вшит» кохлеарный имплант. Имплант взаимодействует с клетками слухового нерва и к пациенту постепенно возвращается слух.

Бионический глаз для восстановления зрения

С помощью импланта «бионический глаз» ученые научились восстанавливать зрение. Первая медицинская операция прошла в США еще в 2008 году. Помимо пересаженной искусственной сетчатки, пациентам выдаются специальные очки со встроенной камерой. Система позволяет воспринимать полноценную картинку, различать цвета и очертания предметов. Сегодня в очереди на проведение подобной операции стоит свыше 8 000 человек

Медицина шагнула ближе к лечению СПИДа

Ученые из Рокфеллеровского университета (Нью Йорк, США) совместно с фармацевтической компании GlaxoSmithKline провели клинические испытания медицинского препарата GSK744, который способен снизить вероятность заражения ВИЧ более чем на 90%. Вещество способно подавлять работу фермента, с помощью которого ВИЧ модифицирует ДНК клетки и затем размножается в организме. Работа значительно приблизила ученых к созданию нового лекарства против ВИЧ.

Органы и ткани с помощью 3D-принтеров

3D-биопринтинг: органы и ткани печатают с помощью принтера

За последние 2 года ученые на практике смогли добиться создания органов и тканей с помощью 3D-принтеров и успешно вживлять их в организм пациента.

Современные медицинские технологии позволяют создавать протезы рук и ног, части позвоночника, уши, нос, внутренние органы и даже клетки тканей.

Весной 2014 года врачи Университетского медицинского центра Утрехта (Голландия) успешно провели первую в истории медицины пересадку черепной кости, созданную с помощью 3D-принтера.

Не пропустите интересные новости в фотографиях:

12millionov.com

Самые важные открытия в истории медицины

Самые важные открытия в истории медицины

1. Анатомия человека (1538)

Андреас Везалий

Андреас Везалий анализирует человеческие тела на основе вскрытий, излагает подробные сведения о человеческой анатомии и опровергает различные толкования по этой теме. Везалий считает, что понимание анатомии имеет решающее значение для проведения операций, поэтому он анализирует человеческие трупы (что необычно для того времени). 

Его анатомические схемы кровеносной и нервной систем, написанные в качестве эталона для помощи своим ученикам, копируются так часто, что он вынужден опубликовать их, чтобы защитить их подлинность. В 1543 году он публикует работу De Humani Corporis Fabrica , которая послужила началом рождения науки - анатомии.

 

2. Кровообращение (1628)

Уильям Харви

Уильям Харви обнаруживает, что кровь циркулирует по организму и называет сердце как орган, ответственный за кровообращение крови. Его новаторские работы, анатомический очерк о работе сердца и циркуляции крови у животных, опубликованный в 1628 году, составил основу для современной физиологии.

 

3. Группы крови (1902)

Капрл Ландштейнер

Австрийский биолог Карл Ландштейнер и его группа обнаруживает четыре группы крови у человека и разрабатывает систему классификации. Знание различных типов крови имеет решающее значение для выполнения безопасного переливания крови, что является в настоящее время обычной практикой.

 

4. Анестезия (1842-1846)

Некоторые ученые обнаружили, что определенные химические вещества могут быть использованы в качестве анестезии, что позволяет выполнять операции без боли. Первые эксперименты с анестетиками - закисью азота (веселящий газ) и серного эфира – начали использоваться в 19 веке в основном стоматологами.

 

5. Рентгеновские лучи (1895)

Вильгельм Рентген

Вильгельм Рентген случайно обнаруживает рентгеновские лучи, проводя эксперименты с излучением катодных лучей (выброс электронов). Он замечает, что лучи способны проникать через непрозрачную черную бумагу, обернутую вокруг электронно-лучевой трубки. Это приводит к свечению цветов, расположенных на соседнем столике. Его открытие явилось революцией в области физики и медицины, что принесло ему первую в истории Нобелевскую премию по физике в 1901 году.

 

6. Теория микробов (1800)

Луи Пастер

Французский химик Луи Пастер считает, что некоторые микробы являются болезнетворными агентами. В то же время, происхождение таких заболеваний, как холера, сибирская язва и бешенство остается загадкой. Пастер формулирует микробную теорию, предполагая, что эти заболевания и многие другие, вызваны соответствующими бактериями. Пастера называют "отцом бактериологии", потому что его работа стала преддверием новых научных исследований.

 

 

7. Витамины (в начале 1900-х годов)

Фредерик Хопкинс

Фредерик Хопкинс и другие обнаружили, что некоторые заболевания, вызванные недостатком определенных питательных веществ, которые позже получили название витаминов. В экспериментах с питанием над лабораторными животными, Хопкинс доказывает, что эти "факторы аксессуары питания" имеют важное значение для здоровья.

 

=============================================================================

 Образование – одна из основ развития человечества. Только благодаря тому, что из поколения в поколение человечество передавало свои эмпирические знания,  в настоящий момент мы можем пользоваться благами цивилизации, жить в определенном достатке и без уничтожающих расовых и племенных войн за доступ к ресурсам существования. Образование проникло и в сферу Интернет. Один из образовательных проектов получил название – Отрок.

 

=============================================================================

 

 

8. Пенициллин (1920-1930-е годы)

 

 

Александр Флеминг

Говард Флори

Эрнст Борис

Александр Флеминг открыл пенициллин. Говард Флори и Эрнст Борис выделили его в чистом виде, создав антибиотик. 

Открытие Флеминга произошло совершенно случайно, он заметил, что плесень убила бактерии определенного образца в чашке Петри, которая просто валялась в раковине лаборатории. Флеминг выделяет образец и называет его Penicillium нотатум. В следующих экспериментах, Горвард Флори и Эрнст Борис подтвердили лечение пенициллином мышей с бактериальными инфекциями.

 

9. Серосодержащие препараты (1930)

Герхард Домагк

Герхард Домагк обнаруживает, что пронтозила, оранжево-красный краситель, эффективен для лечения инфекций, вызванных бактериями стрептококка общего. Это открытие открывает путь к синтезу химиотерапевтических препаратов (или «чудо-лекарства") и производству сульфаниламидных препаратов, в частности.

 

10. Вакцинация (1796)

Эдвард Дженнер

Эдвард Дженнер, английский врач, проводит первую вакцинацию против оспы, определив то, что прививка коровьей оспы обеспечивает иммунитет. Дженнер сформулировал свою теорию после того, как заметил, что пациенты, которые работают с крупным рогатым скотом и вступали в контакт с коровой, не заболели оспой, во время эпидемии в 1788 году.

 

11. Инсулин (1920)

Фредерик Бантинг

Фредерик Бантинг и его коллеги обнаружили гормон инсулин, который помогает сбалансировать уровень сахара в крови у больных сахарным диабетом и позволяет им жить нормальной жизнью. До открытия инсулина, спасти больных диабетом было невозможно.

 

12. Открытие онкогенов (1975)

 

Гарольд Вармус

Майкл Бишоп

 

13. Открытие человеческого ретровируса ВИЧ (1980)

Роберт Галло

Люк Монтанье

Ученые Роберт Галло и Люк Монтанье отдельно друг от друга открыли новый ретровирус, названный позже ВИЧ (вирус иммунодефицита человека), и классифицировали  его в качестве возбудителя СПИДа (синдрома приобретенного иммунодефицита).

Похожие статьи:

mostinfo.su

Как открыть медицинский центр? - Медицина

Все больше людей в последние годы стало обращаться не в государственные поликлиники, а в частные медицинские центры. Причиной тому является высокое качество обслуживания, индивидуальный подход к пациенту, отсутствие длинных очередей и т.д. Так что открытие частного медицинского центра — отличная бизнес-идея, которая способна принести хороший доход. На сайте medicalgroup.ru вы сможете найти поддержку в развитии и продвижении вашего медицинского бизнеса.

Вот несколько советов, которые помогут вам создать успешный медицинский центр.

  1. Ни одна клиника не будет успешной без современного и функционального оборудования. Если вы не можете себе позволить приобрести оборудование сегодня, воспользуйтесь лизингом. Чтобы не ошибиться с выбором, можете посмотреть, как данное оборудование работает в других клиниках.
  2. В хорошем медицинском центре требуются не только хорошие врачи. Здесь понадобятся и специалисты, занимающиеся устранением неисправностей оборудования, специалисты, контролирующие освещенность кабинетов и другие параметры.
  3. Если вы молодой специалист, то завоевать авторитет у врачей со стажем вам будет непросто. Будьте готовы и к тому, что врачей, пришедших из госучреждений, вам придется обучать общению с пациентами.

Любое медицинское учреждение должно быть лицензированным. Для того, чтобы получить лицензию, нужно иметь соответствующее помещение и оборудование. В штате должен работать профессиональный персонал. Рассмотрение заявки выполняется в течение 2 месяцев. Само же лицензирование может затянуться на год. Трудность состоит в том, что каждая медицинская услуга требует получения отдельной лицензии.

Одним из самых сложных вопросов при открытии собственной клиники является вопрос привлечения клиентов. В первое время необходимо будет распространять информацию о клинике по всем возможным каналам: телевидению, радио, в Интернете, печатных изданиях. Желательно сразу же создать собственный сайт. На нем необходимо разместить доступную информацию. Привлекать пациентов можно и при помощи предложения бесплатных консультаций, проведения дней здоровья и т.д.

Для того, чтобы открыть собственный медицинский центр, недостаточно быть просто хорошим медицинским специалистом, необходимо еще и иметь опыт организаторской деятельности. Без него вести успешный бизнес будет сложно.

surgeryzone.net

Великие открытия в медицине

Привет всем! По настоятельным просьбам читателей моего блога продолжаю рассказывать о том, какие великие открытия в медицине делались случайно. Начало этого рассказа вы можете прочитать ТУТ.

 1.Как открыли рентген

Вы знаете, как был открыт рентген? Оказывается, еще в начале прошлого века никто ничего не знал об этом аппарате. Это излучение первым обнаружил немецкий ученый Вильгельм Рентген.

Как же проводили операции врачи прошлого столетия? Вслепую! Врачи не знали, где сломана кость или сидит пуля, они полагались только на свою интуицию, да чувствительные руки.

Открытие произошло случайно ноября 1895 года. Ученый проводил эксперименты, используя стеклянную трубку, в которой находился разаряженный воздух.

Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения.

Когда он потушил свет в лаборатории и собрался уходить, то заметил зеленое свечение в баночке на столе. Как выяснилось, это было результатом того, что он забыл отключить свой прибор, который стоял в другом углу лаборатории. При выключении прибора свечение исчезало.

Ученый решил накрыть трубку черным картоном, а потом создать темноту в самой комнате. Он помещал на пути лучей различные предметы: листы бумаги, доски, книги, но лучи беспрепятственно проходили сквозь них. Когда на пути лучей случайно попала рука ученого, он увидел двигающиеся кости.

Скелет, как и металл, оказался непроницаем для лучей. Также был удивлен Рентген, когда увидел, что пластина для фотографии, находившаяся в этой комнате, тоже засветилась.

Он вдруг осознал, что это какой-то неординарный случай, которого никто еще не видел. Ученый был так ошеломлен, что решил пока никому об этом не рассказывать, а самому изучить это непонятное явление! Вильгельм назвал это излучение –«лучом икс». Вот так удивительно и внезапно был открыт рентгеновский луч.

Физик решил дальше проводить этот любопытный эксперимент. Он позвал свою жену- фрау Берту, предложив ей положить руку под «луч икс». После этого они были ошеломлены уже оба. Супруги увидели скелет руки человека, который не умер, а был живой!

Они вдруг поняли, что произошло новое открытие в сфере медицины, причем такое важное! И были правы! До сегодняшнего дня вся медицина пользуется рентгеном. Это был первый в истории рентгеновский снимок.

За это открытие в 1901 году Рентген был удостоен первой Нобелевской премии в области физики. Тогда ученые не знали , что неправильное использование рентгеновских лучей опасно для здоровья. Многие получили тяжелые ожоги. Тем не менее, ученый дожил до 78 лет, занимаясь научными исследованиями.

На этом величайшем открытии стали развиваться и совершенствоваться большая область медицинских технологий, например, компьютерная томография и тот же «рентген» телескоп, который способен улавливать лучи из космоса.

Сегодня без рентгена или томографии не обходится ни одна операция. Так неожиданная находка спасает жизни людей, помогая врачам точно уставить диагноз и находить больной орган.

С их помощью возможно определять подлинность картин, отличать настоящие драгоценные камни от поддельных, а на таможне стало легче задерживать контрабандный товар.

Самое поразительное, что это все основано на случайном, нелепом эксперименте.

к содержанию ↑

2.Как открыли пенициллин

Еще одним неожиданным событием было открытие пенициллина. В Первую Мировую войну большая часть солдат умирали от различных инфекций, которые попадали на их раны.

Когда шотландский врач — Александр Флеминг занялся изучением стафилококковых бактерий, он обнаружил, что в его лаборатории появилась плесень. Флеминг вдруг увидел, что бактерии стафилококка, находившиеся недалеко от плесени стали погибать!

В дальнейшем, он вывел из той самой плесени вещество, уничтожающее бактерии, которое было названо «пенициллином». Но Флемингу не удалось довести это открытие до конца, т.к. не смог выделить чистый пенициллин, пригодный для инъекций.

Прошло некоторое время, когда Эрнст Чейн и Хоуард Флори случайно нашли неоконченный эксперимент Флеминга. Они решили довести его до конца. Через 5 лет они получили чистый пенициллин.

Ученые ввели его больным мышам, и грызуны выжили! А те, кому не было введено новое лекарство — погибли. Это была настоящая бомба! Это чудо помогало исцелять от многих недугов, среди которых можно назвать ревматизм, фарингит, даже сифилис.

Но…

Справедливости ради надо сказать, что еще в далеком 1897 году  молодой военный врач из Лиона Эрнест Дюшен, наблюдая, как арабские конюхи смазывают раны у лошадей, натертые седлами, соскребая плесень с этих же влажных седел, сделал упомянутое выше открытие. Он провел исследования на морских свинках и написал докторскую диссертацию о полезных свойствах пенициллина. Однако Парижский институт Пастера не принял эту работу даже к рассмотрению, сославшись на то, что автору было всего 23 года. Слава пришла к Дюшену (1874-1912) только после смерти, через 4 года после получения сэром Флемингом Нобелевской премии.к содержанию ↑

3.Как открыли инсулин

Также неожиданно был получен и инсулин. Именно этот препарат избавляет миллионы людей, больных сахарным диабетом. У людей с сахарным диабетом была случайно обнаружена одна общая черта — поражение клеток поджелудочной железы, выделяющих гормон, который координирует уровень сахара в крови. Это и есть инсулин.

Он был открыт в 1920 году. Два хирурга из Канады — Чарльз Бест и Фредерик Бантинг изучали образование этого гормона у собак. Они вводили больному животному тот гормон, который формировался у здоровой собаки.

Результат превзошел все ожидания ученых. Через 2 часа у больной собаки уровень гормона был снижен. Далее эксперименты проводились на больных коровах.

В январе 1922 года ученые отважились провести испытание на человеке, сделав укол 14-летнему мальчику, больному сахарным диабетом. Прошло немного времени, как юноше стало легче. Так произошло открытие инсулина. Сегодня этот препарат спасает миллионы жизней по всему свету.

А про диабет я бы вам рекомендовал посмотреть видео с Еленой Малышевой. Признаки диабета, видимые невооруженным залом, интересно?:

 

Сегодня мы поговорили о трех великих открытиях в медицине, которые делались случайно. Это не последняя статья на такую интересную тему, заходите на мой блог, я вас порадую новыми любопытными известиями. Покажите статью друзьям, ведь им это тоже интересно узнать.

 

Автор блога Алексей Фролов

rublsorok.ru


© 2005-2018, Национальный Экспертный Совет по Качеству.

Высокое качество системы сертификации Центрстройэкспертиза-Тест подтверждено ВОК



Ассоциация СРО Единство