ДОМАШНИЙ БИЗНЕС

БИЗНЕС БЕЗ ВЛОЖЕНИЙ

БИЗНЕС ДЛЯ ЖЕНЩИН

МАЛЫЙ БИЗНЕС

БИЗНЕС-ПЛАН

ИДЕИ ДЛЯ БИЗНЕСА

БИЗНЕС-СОВЕТЫ

БИЗНЕСМЕНАМ

ИНТЕРНЕТ-БИЗНЕС

Доклад: Полимерные материалы, пластмассы. Химическая формула пластмасса


83. Состав пластмасс. Влияние компонентов на качество изделий

Состав пластических масс

По составу пластические массы разделяют на простые и сложные (композиционные). Первые состоят только из полимера (синтетической смолы или химически видоизмененного природного полимера), к которому могут добав­ляться небольшие количества красителей и стабилизаторов (до 3%). Композиционные пластмассы содержат, кроме того, значительные количества (до нескольких десятков процентов) других компонентов: наполнителей, пластифика­торов, газообразователей, отвердителей. Вспомогательной добавкой являются смазывающие вещества, предотвра­щающие прилипание отформованного изделия к стенкам формы. В композиционных пластмассах полимеры выпол­няют роль компонента, связывающего другие составные части (особенно наполнитель), поэтому их называют свя­зующими веществами.

Связующими веществами являются преимущественно синтетические высокомолекулярные соединения и неко­торые видоизмененные природные полимеры (эфиры целлюлозы). Они являются главной составной частью, опре­деляющей все основные свойства пластмасс; их способность формоваться при повышенных температурах и давлении, а также сохранять приданную изделию форму. К композиционным относятся пластмассы на основе феноло- и амино-альдегидных смол, которые применяют обычно с наполнителями и красителями, поэтому по своей структуре они гетерофазны. Многие синтетические смолы (полиэтилен, полистирол и др.), а также эфиры целлюлозы используют в качестве пластмасс как с наполнителями, так и без них.

Наполнителями пластмасс служат различные измельченные неорганические и органические материалы, напри­мер: древесная мука, кварцевый песок, каолин, тальк, дробленая слюда (отходы) и другие порошкообразные и волок­нистые материалы (очесы хлопка, волокна асбеста, измельченные обрезки тканей и бумаги). Наполнитель может со­ставлять более половины состава пластмассы. В слоистых пластмассах (гетинаксе, текстолите) наполнителем являют­ся рулонная бумага и ткани, пропитанные и склеенные смолой.

Порошкообразные наполнители перемешиваются со связующими веществами и остальными компонентами пластмассы, пропитываются и обволакиваются связующим веществом, благодаря чему в процессе формования изде­лий образуется твердая и плотная масса. При этом свойства пластмасс видоизменяются.

Введение наполнителя повышает механическую прочность и твердость, понижает величину усадки пластмассы в процессе формования изделия. Особенно улучшаются механические свойства, повышается прочность на удар при введении в пластмассу волокнистых наполнителей, выполняющих роль армирующих элементов и устраняющих хруп­кость ненаполненных пластмасс. Наряду с повышением прочности и твердости введение наполнителей в ряде случаев повышает теплостойкость и огнестойкость пластмасс, облегчает их переработку и снижает стоимость.

Газообразователи вводят в состав для получения газонаполненных пластмасс (поро- и пенопластов). Они пред­ставляют собой химические соединения, разлагающиеся в процессе формования изделий при нагревании с выделени­ем газообразных веществ.

Пластификаторами являются маслообразные органические вещества, имеющие высокую температуру кипения, - преимущественно сложные эфиры фталевой и фосфорной кислот (дибутилфталат, диоктилфталат, трикрезилфосфат) и др. Их добавляют в тех случаях, если необходимо уменьшить жесткость и хрупкость полимера. Повышая пластич­ность связующего вещества и тем самым облегчая переработку пластмассы, пластификаторы придают материалам и изделиям эластичность и гибкость. Для полярных полимеров применяют полярные, а для неполярных - неполярные пластификаторы.

Проникая между макромолекулами и иными структурными элементами смолы, молекулы пластификатора взаимодействуют с ними, сольватируют и раздвигают их, ослабляют силы межмолекулярного взаимодействия между ними. При этом температура стеклования (затвердевания) понижается, расширяются пределы температур, в которых полимер сохраняет высокоэластическое состояние. В результате увеличивается его морозостойкость, хотя стойкость к повышенным температурам (теплостойкость) понижается. Большое количество пластификаторов (до 50% и более со­става пластмассы) расходуется для превращения жесткого и относительно хрупкого полимера - поливинилхлоридной смолы - в мягкий и эластичный пластик - поливинилхлоридный пластикат.

Пластификаторы должны взаимодействовать и хорошо совмещаться с полимером, не испаряться и не мигриро­вать («выпотевать») из него, быть химически стабильными и физиологически безвредными. Последнее требование особенно важно для пластмасс, используемых в производстве бытовых изделий. Очень перспективными пластифика­торами оказались низкомолекулярные полиэфирные смолы, которые почти совсем не мигрируют из полимера, прак­тически нелетучи, обладают масло- и бензиностойкостью.

Красящие вещества пластмассы - это тонко измельченные пигменты и органические красители, стойкие к тем­пературам, при которых формуются изделия. Некоторые минеральные пигменты одновременно выполняют роль не только красителя, но и наполнителя пластмасс (окись цинка, литопон, сажа и др.). При выборе красящего вещества для окрашивания учитывают и его способность ускорять (стимулировать) или, наоборот, задерживать (ингибировать) старение пластмассы.

Стабилизаторы (ингибиторы) - это вещества, препятствующие необратимому изменению свойств синтетиче­ских смол и пластмасс под действием тепла, кислорода воздуха, света, влаги и прочих факторов, т. е. замедляющие процессы старения. Особенно интенсивное старение пластмасс вызывают ультрафиолетовые лучи, обладающие большой мощностью, сравнимой с энергией химических связей. Вследствие этого они способны отрывать электроны с наружных оболочек атомов. Такое действие ускоряет взаимодействие макромолекул полимера с кислородом, влагой и между собой, приводит, с одной стороны, к их разрыву (деструкции), с другой - к образованию поперечных связей (сшивок) между цепями (структурированию). В результате понижаются механическая прочность и эластичность по­лимерных материалов и изделий, возрастает хрупкость, ухудшается их внешний вид.

По характеру действия стабилизаторы делят на термостабилизаторы, препятствующие термоокислительной де­струкции, и светостабилизаторы, защищающие полимер от фотохимической деструкции. Имеются стабилизаторы и комплексного действия.

Сущность действия небольших добавок (0,1-3%) стабилизаторов (аминов, фенолов и др.) сводится к блоки­рованию активных центров (свободных радикалов), образующихся при деструкции полимера. Светостабилизаторы (сажа и др.) поглощают энергию ультрафиолетовых лучей и этим предотвращают разрыв молекул полимера и другие возможные химические процессы старения.

Отвердители вводят в отдельные пластмассы для перевода полимера в процессе формования изделий в неплав­кое и нерастворимое состояние. Их действие основано на сшивании структуры полимера. Ими являются ди- и поли-функциональные соединения (формальдегид, диамины, дикарбоновые кислоты и др.).

studfiles.net

Доклад - Полимерные материалы, пластмассы

Содержание:

1. Историческая справка.

2. Определение полимеров.

3. Пластмассы.

· Определение

· Классификация

а. Природные (органические)

б. Синтетические

4. Основные представители.

· Полистирол

· Полиэтилен

· Полиимид

· Эпоксидные смолы

5. Основные свойства пластмасс.

· Химические свойства

· Физические свойства

Историческая справка.

Термин “поли­мерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содер­жание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.

Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах отно­сятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),

Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью мо­лекул, проявляющейся в реакциях поли­меризации. Дальнейшее свое развитие наука о полимерах по­лучила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было до­казано существование свободнорадикального и ионного механиз­мов полимеризации. Большую роль в развитии представлений о поликонденса­ции сыграли работы У.Карозерса.

С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие био­полимеры, как целлюлоза, крахмал, кау­чук, белки, а также некоторые син­тетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способ­ностью ассоциировать в растворе в комп­лексы коллоидной природы благодаря нековалентным связям (теория “малых блоков”). Автором принципиально но­вого представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Полимеры

(Определение полимеров)

Полимеры – высокомолекулярные соединения, вещества с большой молекулярной массой (от нескольких тысяч до нескольких миллионов), в которых атомы, соединенные химическими связями, образуют линейные или разветвленные цепи, а также пространственные трехмерные структуры. К полимерам относятся многочисленные природные соединения: белки, нуклеиновые кислоты, целлюлоза, крахмал, каучук и другие органические вещества. Большое число полимеров получают синтетическим путем на основе простейших соединений элементов природного происхождения путем реакций полимеризации, поликонденсации, и химических превращений.

В зависимости от строения основной цепи полимеры делятся на линейные, разветвленные, и пространственные структуры. Линейные и разветвленные цепи можно превратить в трехмерные действием химических агентов, света, и радиации, а также путем вулканизации.

Линейные ВМС могут иметь как кристаллическую, так и аморфную (стеклообразную) структуру. Разветвленные и трехмерные полимеры, как правило, являются аморфными. При нагревании они переходят в высокоэластическое состояние подобно каучуку, резине, и другим эластомерам. При действии особо высоких температур, окислителей, кислот и щелочей, органические и элементоорганические ВМС подвергаются постепенному разложению, образуя газообразные, жидкие, и твердые соединения.

Физико-механические свойства линейных и разветвленных полимеров во многом связаны с межмолекулярным взаимодействием за счет сил побочных валентностей. Так, например, молекулы целлюлозы взаимодействуют между собой по всей длине молекул, и это явление обеспечивает высокую прочность целлюлозных волокон. А разветвленные молекулы крахмала взаимодействуют лишь отдельными участками, поэтому не способны образовывать прочные волокна. Особенно прочные волокна дают многие синтетические полимеры (полиамиды, полиэфиры, полипропилен и др.), линейные молекулы которых расположены вдоль оси растяжения. Трехмерные структуры могут лишь временно деформироваться при растяжении, если они имеют сравнительно редкую сетку (подобно резине), а при наличии густой пространственной сетки они бывают упругими или хрупкими в зависимости от строения.

ВМС делятся на две большие группы: гомоцепные, если цепь состоит из одинаковых атомов (в том числе карбоцепные, состоящие только из углеродных атомов), и гетероцепные, когда цепь включает атомы разных элементов. Внутри этих групп полимеры подразделяются на классы в соответствии с принятыми в химической науке принципами.

Так, если в основную или боковые цепи входят металлы, сера, фосфор, кремний и др., полимеры относятся к элементоорганическим соединениям.

Полимерные материалы делятся на три основные группы: пластические массы, каучуки, волокна химические. Они широко применяются во многих областях человеческой деятельности, удовлетворяя потребности различных отраслей промышленности, сельского хозяйства, медицины, культуры и быта.

Пластмассы.

Определение.

ПЛАСТМАССЫ (пластические массы, пластики)-материалы на основе полимеров. Большой класс полимерных органических легко формуемых материалов, из которых можно изготавливать легкие, жесткие, прочные, коррозионностойкие изделия.

Эти вещества состоят в основном из углерода (C), водорода (H), кислорода (O) и азота (N). Все полимеры имеют высокую молекулярную массу, от 10 000 до 500 000 и более; для сравнения, кислород (O2 ) имеет молекулярную массу 32. Таким образом, одна молекула полимера содержит очень большое число атомов.

Классификация.

Некоторые органические пластические материалы встречаются в природе, например асфальт, битум, шеллак, смола хвойных деревьев и копал (твердая ископаемая природная смола). Обычно такие природные органические формуемые вещества называют смолами.

Хотя модифицированные природные полимеры и находят промышленное применение, большинство используемых пластмасс являются синтетическими. Органическое вещество с небольшой молекулярной массой (мономер) сначала превращают в полимер, который затем прядут, отливают, прессуют или формуют в готовое изделие. Сырьем обычно являются простые, легко доступные побочные продукты угольной и нефтяной промышленности или производства удобрений.

Первым термопластом, нашедшим широкое применение, был целлулоид—искусственный полимер, полученный путем перера­ботки природного—целлюлозы.

Основные представители.

Полистирол— неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210…… 350 К. Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостой­кость, антистатические свойства, пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к дей­ствию органических растворителей (толуол, бензол, четыреххло­ристый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).

Полистирол вспенивающийся широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать вре­менную изоляцию от воздействия тепла, излучаемого другими эле­ментами.

Полиэтилен— полимер с чрезвычайно широким набором свойств и использующийся в больших объемах, вследствие чего его считают королем пластмасс. За 10… 12 лет экс­плуатации прочность его снижается лишь на ¼. Благодаря хи­мической чистоте и неполярному строению полиэтилен обладает высокими диэлектрическими свойствами. Они в со­четании с высокими механическими и химическими свойствами обусловили широкое применение полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.

Помимо полиэтилена общего назначения выпускаются его мно­гие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от корро­зии), электропроводящий (для экранирования).

Главный недостаток полиэтилена—сравнительно низкая нагревостойкость

Полиимид — новый класс термостойких полимеров, аромати­ческая природа молекул которых определяет их высокую прочность вплоть до температуры разложения, химическую стойкость, тугоплавкость. Полиимидная пленка работоспособна при 200°С в течение нескольких лет, при 300°С —1000 ч, при 400°С —до 6 ч. Кратковременно она не разрушается даже в струе плазменной горелки. При некоторых специфических усло­виях полиимид превосходит по температурной стойкости даже алюминий. Степень разрушения полиимида — 815°С., алюминия 515°С.

Эпоксидные смолы— продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца

Основные свойства пластмасс .

Химические свойства.

С точки зрения химического поведения полимер похож на мономер (или мономеры), из которого (или которых) он получен. Углеводороды этилен h3 C=Ch3, пропилен h3 C=CH–Ch4 и стирол h3 C=CH–C6 H5 претерпевают присоединительную полимеризацию, образуя полиэтилен, полипропилен и полистирол со следующими структурами

Эти полимеры ведут себя как углеводороды. Они, например, растворимы в углеводородах, не смачиваются водой, не реагируют с кислотами и основаниями, горят, подобно углеводородам, могут хлорироваться, бромироваться и  в случае полистирола  нитроваться и сульфироваться

Физические свойства.

Физические свойства полимера, напротив, зависят не только от характера мономера, но в большей степени от среднего количества мономерных звеньев в цепи и от того, как цепи расположены в конечной макромолекуле.

Все синтетические и используемые в промышленности природные полимеры содержат цепи с различным числом мономерных единиц. Это число называют степенью полимеризации (СП) и обычно пользуются его средним значением, поскольку цепи не одинаковы по длине. Средняя длина цепи и СП может быть определена экспериментально несколькими методами (например, осмометрией  измерением осмотического давления различных растворов; вискозиметрией  измерением вязкости; оптическими методами  измерением светорассеяния различными растворами; ультрацентрифугированием, при котором вещества разделяются по их плотности). СП особенно важна при определении механических свойств полимера, поскольку при прочих равных условиях более длинные цепи налагаются друг на друга более эффективно и порождают большие силы сцепления. Можно сказать, что заметная механическая прочность наблюдается уже при СП 50–100, достигая максимума при СП выше 1000.

www.ronl.ru

Реферат - Пластмассы - Химия

 

 

 

 

 

 

Содержание:

Введение..............................................................2

Свойства и производство пластмасс.............2

Применение пластмасс....................................7

Пластмассы в строительстве....................7

Пластмассы в спорте..................................9

Заключение.......................................................10

Список литературы.........................................11

 

 

 

 

 

 

 

 

Введение.

Слово «пластичность» произошло от греческого слова plastikos, что означает «годный для лепки, податливый». Многие столетия единственным пластичным, широко применяемым для лепки материалов была глина. Однако теперь, когда говорят о пластических массах (пластмассах), подразумевают только материалы, созданные на основе полимеров.

Немногим более ста лет назад братья Хайэтт в Нью-Джерси (США) в поисках прочной, но рыхлой массы для типографских валиков создали хорошо формующийся материал из низконитрованной бумаги и камфоры. Так появилось на свет первое искусственное полимерное вещество, получившее название «целлулоид».

В настоящее время в нашем распоряжении имеется широкая палитра настолько разных синтетических веществ, что сами специалисты вряд ли могут охватить все ее многообразие. А для неспециалистов пластмассы – это наиболее характерный продукт современной химии[1]. Хотя целлулоид быстро нашел большой спрос, вскоре ему пришлось потесниться. Началась «эра» искусственных органических материалов, которые стали называть пластмассами, собственно, только во второй половине нашего века. В 1900 году мировое производство пластмасс составило всего около 20 тыс. тонн. А уже в середине столетия их ежегодный выпуск достигал примерно 1,5 млн. тонн. В 60-е годы производство пластмасс сделало гигантский скачок: в 1970 году было выпущено уже 38 млн. тонн этих искусственных материалов. Начиная с 1950 года производство пластмасс удваивалось каждые 5 лет.

Если в XIX веке пластмассы заменяли лишь дорогие и редкие материалы – слоновую кость, янтарь, перламутр, то в начале нашего века их стали использовать вместо дерева, металла, фарфора. Сейчас пластмассы нельзя назвать «заменителями». Многие современные пластмассы превосходят по своим свойствам большинство природных материалов. Многие из них имеют столь ценные качества, что у них нет аналогов в природе. Производство пластмасс развивается значительно быстрее, чем производство металлов.

Свойства и производство пластмасс.

Пластмассы представляют собой материалы на основе природных или синтетических полимеров, способные приобретать заданную форму при нагревании и под давлением и устойчиво сохранять ее после охлаждения.

Органические искусственные вещества – полимеры – построены, как известно, из макромолекул многочисленных малых основных молекул (мономеров). Процесс их образования зависит от разных факторов – отсюда  широкие возможности варьирования и комбинирования, а следовательно и неисчерпаемые возможности получения продуктов с самыми разнообразными свойствами. Основные процессы образования макромолекул – это полимеризация, ступенчатая

Структурные формулы некоторых распространенных полимеров.

Название полимера

Структура полимера

/>Мочевиноформальдегидная смола

 

/>Полиамидная смола

 

/>Полиакрилат

 

/>Полиметилметакрилат

 

полимеризация (полиприсоединение) и поликонденсация.

Полимеризация – это химическая реакция образования высокомолекулярных продуктов вследствие сцепления простых ненасыщенных органических мономеров, протекающая без отщепления каких либо частей молекул. Пример: n·этилен à полиэтилен.

Полиприсоединение – это объединение различных основных молекул в высокомолекулярные продукты без отщепления третьего вещества. Пример: x·диизоцианат (OCN(R)nNCO) + y·многоатомный спирт à полиуретан.

Поликонденсация – реакция образования высокомолекулярного вещества из мономеров различного вида, которая сопровождается отщеплением низкомолекулярного продукта (часто молекул воды). Пример: x·формальдегид + y·мочевина ((Nh3)2CO) àмочевиноформальдегидная смола + z·вода.

Физические и химические свойства полимеров обусловлены как особенностями химического состава и молекулярного строения этих веществ, так и их «надмолекулярной» структурой. Так химическая стойкость полиэтилена (устойчивость к действию агрессивных сред) определяется химической формулой мономера (–Ch3–Ch3 –), не содержащего после полимеризации двойных связей, а физические свойства, например эластичность и непроницаемость,– его надмолекулярной структурой.

Рассмотрим первый аспект проблемы – химический состав и молекулярное строение полимеров.

В соответствие с местом в периодической системе углерод четырехвалентен. Главной его особенностью является способность образовывать вещества, в которых атомы углерода связаны между собой. При этом могут возникать как цепочные (в виде простых или разветвленных цепей), так и циклические

/> />

соединения:

/>

В зависимости от числа атомов и их взаимного расположения изменяются и свойства вещества. Например, чем больше атомов входит в соединение, тем менее оно летучее.

Свойства соединений углерода в большой степени зависят от характера связей между его отдельными атомами. Способность атомов углерода образовывать цепочки, кольца или сложные решетки, в которые вклинены другие элементы, обуславливает существование свыше трех миллионов известных в настоящее время соединений углерода.

Благодаря изменению структур молекул и их разнообразным комбинациям ассортимент пластмасс значительно расширяется за счет создания пластмасс с желаемыми свойствами. Хорошим примером реализации таких возможностей являются АБС-полимеры. Их название образовано от начальных групп трех основных мономеров: акрилонитрил (Ch3=CH–CN) (А) вносит свою долю в химическую устойчивость продукта, бутадиен (Б) сообщает ему сопротивление ударам, стирол (С) делает материал твердым и легко поддающимся термопластической обработке. Получают АБС-полимеры исключительно путем привитой полимеризации. Привитая полимеризация – процесс образования высокомолекулярных соединений, в ходе которого на основную цепь полимера прививаются дополнительные боковые цепь другого химического характера. Варьируя доли отдельных мономеров и условия полимеризации можно изготовить продукты с различными свойствами. Основное назначение АБС-полимеров – замещать металлы в конструкциях и аппаратах.

Помимо полимера в состав пластмасс часто входят различные добавки: наполнители, пластификаторы, стабилизаторы, красители и другие компоненты.

Наполнители – это вещества, служащие для придания пластмассе необходимых эксплуатационных свойств (например, высокой прочности, термостойкости и др.), облегчения переработки, снижения стоимости. В качестве наполнителей применяют опилки, сажу, графит, стеклянные, асбестовые, химические волокна. В слоистых пластиках (пластмассы, упрочненные параллельно расположенными слоями наполнителя) роль наполнителя выполняют бумага, ткани; в пенопластах газы, например азот. Применение наполнителей снижает стоимость пластмассы. Ведь, как правило, наполнители – это отходы различных производств, они значительно дешевле самого полимера.

Пластификаторы вводят в состав пластмассы с целью повышения пластичности или эластичности полимера и готовой пластмассы. В качестве пластификаторов используют, главным образом, нелетучие, химически инертные вещества, например дибутилфталат (C6h5(COOC4H9)2), нефтяные масла. Молекулы пластификатора, например глицерина ослабляют связи между макромолекулами полимера. Это облегчает процесс формования пластмассы, позволяет проводить его при меньшей температуре.

Стабилизаторы – вещества, тормозящие старение пластмассы, происходящее, как правило, в результате деструкции. Деструкция полимеров – процесс разрушения их молекул под действием тепла, кислорода, света и др. В результате деструкции изменяются многие свойства полимеров и часто они становятся непригодными для использования. Стабилизаторы защищают полимеры от окисления (ароматические амины, фенолы), действия атмосферы, озона (воски), предохраняют полимеры от воздействия света (сажа) и ультрафиолетового света, защищают от разрушения под действием ионизирующих излучений (ароматические углеводороды, амины).

Нередко одно и то же вещество в пластмассе может выполнять одновременно несколько функций. Так фосфаты удается использовать и как антипирены (вещества понижающие горючесть материалов органического происхождения), и как пластификаторы. Наполнитель может «работать» и как антиокислитель, и как пигмент, а также способствовать непроницаемости материала.

Пластмассы различаются по своим эксплуатационным свойствам (например, пластмассы с высоким электрическим сопротивлением, атмосферо–, термо–, или огнестойкие), по природе наполнителя (например, стеклопластики, графитопласты, газонаполненные пластмассы), по способу расположения наполнителя в материале (слоистые пластики, волокниты – пластмассы, состоящие из рубленого волокна, пропитанного термореактивной синтетической смолой), а также по типу полимера (например, аминопласты, белковые пластики).

В зависимости от характера превращений, происходящих с полимером при формовании, пластмассы подразделяются на реактопласты и термопласты. Реактопласты или термореактивные пластмассы, подобно обожженной глине, не способны вернуть вновь пластичное состояние. Это связано с тем, что их переработка в изделие сопровождается химическим взаимодействием между макромолекулами и образованием пространственной структуры полимера. После такой переработки реактопласты утрачивают пластичность, становясь неплавкими и нерастворимыми. Повторно переработать такой материал в новое изделие уже невозможно. Обычно реактопласты – это фенольные, карбамидные и полиэфирные смолы. Чаще всего в исходном состоянии они представляют жидкости, которые при добавлении катализатора или нагревании необратимо затвердевают вследствие образования сшитых молекул.

Термопласты при нагревании вновь приобретают пластичность, их можно формовать многократно. Их легче превращать в готовые изделия, можно рационально обрабатывать и перерабатывать методами литья под давлением, вакуумной формовки или простой формовки. К термопластам относятся полиэтилен, поливинилхлорид, полистирол и АБС-полимеры.

Пространство между термопластами и реактопластами, как и между натуральными и синтетическими продуктами, заполнено сплошным спектром пластмасс, изготовленных «по специальным заказам». Они имеют порой необычные комбинации свойств. Так, разработаны термопласты с обратимым образованием сшитых молекул. При температуре обработки они могут быть термопластичными, а при температуре применения готового изделия, которая лежит намного ниже, они становятся термореактивными.

Рассмотрим основные методы переработки пластических масс в готовые изделия.

Основные методы переработки термопластов – литье под давлением, экструзия, вакуумформование, пневмоформование; реактопластов – прессование и литье под давлением.

Литье под давлением – способ получения отливок в форме, в которую расплавленная пластмасса поступает под давлением, а после затвердевания в результате остывания или отверждения приобретает конфигурацию внутри полости формы. Этот метод применяется главным образом для получения сложных изделий с высокой точностью.

Экструзия – это способ изготовления профилированных изделий большой длины. Заключается в непрерывном выдавливании размягченной пластмассы через отверстие определенного сечения. Применяется в производстве труб, пленок, при наложении электрической изоляции на провода.

Вакуумформование – метод производства изделий из листовых термопластов. Изделие требуемой конфигурации получают за счет разности давлений, возникающей вследствие разрежения в полости формы, над которой закреплен лист. Применяется, например, в производстве емкостей, деталей холодильников, корпусов приборов.

Пневмоформование – это, как и вакуумформование, способ изготовления изделий из листовых термопластов. Изделие оформляется под действием сжатого воздуха на лист, закрепленный над полостью формы. Применяется, например, в производстве ванн, раковин, деталей остекления самолетов.

Прессование – это способ производства изделий из пластмасс в пресс‑фор­мах, заключающийся в размягчении материала при нагревании и фиксации формы изделия в результате выдержки под давлением. При прямом (компрессионном) прессовании материал нагревают в пресс-форме, при литьевом (трансферном) прессовании – в камере, из которой продавливается в пресс-форму по так называемым литниковым каналам.

Рассмотрим подробнее два метода переработки пластмасс – горячее прессование и литье под давлением.

При горячем прессовании смесь полимера с добавками засыпают в горячую пресс-форму. Пресс-форма (см. рис.) состоит из неподвижной подставки, форма которой соответствует форме прессуемых изделий и подвижного поршня – пуансона. После загрузки смеси пресс-форму закрывают и давят на смесь пуансоном, который постепенно входит в подставку. Благодаря нагреванию смесь становится пластичной и под действием давления заполняет все каналы в пресс‑форме. Если формуется реактопласт, то нагретая масса через некоторое время затвердевает, и готовое изделие вынимают из пресс-формы. Если же формуется термопласт, то пресс-форму надо охлаждать, иначе изделие растечется и потеряет нужные очертания. Это замедляет и удорожает процесс формования. Поэтому термопласты перерабатывают литьем под давлением. Здесь />пластмасса размягчается при нагревании в отдельной камере, а затем уже с помощью насоса под давлением подается в холодную пресс-форму. Пластмасса заполняет ее и, охладившись, быстро затвердевает. Горячее прессование и литье под давлением позволяют изготовлять детали различной формы.

 

 

 

 

Применение пластмасс.

Около двух третей всего мирового производства пластмасс составляют массовые продукты: полиэтилен, поливинилхлорид и полистирол. Основные области их применения – это строительство, упаковка, машиностроение, электротехника, транспорт. Причиной их широкого распространения служат главным образом относительно низкая цена и легкость переработки и лишь во вторую очередь свойства, которые во многом уступают свойствам более дорогих специальных веществ. В оставшейся трети преобладают полиэфирные смолы, полиуретаны, поливинилацетат, аминопласты, фенопласты, полиакрилаты и полиметакрилаты. Так называемые специальные пластмассы, например, полиформальдегид, поликарбонаты, фторполимеры, силиконы, полиамиды и эпоксидные смолы, все вместе составляют около 2%.

Пластмассы в строительстве.

Пластмассы в строительстве могут принести огромную пользу, если их правильно использовать. Прозрачные цветные стекла из ударопрочного поливинилхлорида или бесшовно облицованные поливинилхлоридом деревянные профили не только красивы, но и устойчивы к действию агрессивной промышленной атмосферы и совершенно не нуждаются в уходе. Краска не выцветает, окна не разрушаются, рамы не разбухают и не желтеют. В некоторых странах изготавливают доски из вспененного сополимерацетата (этиленпропиленового каучука с полистиролом) и других пластиков. Поскольку они устойчивы к атмосферным воздействиям, их можно применять не только в интерьерах, но и для наружных строительных деталей (например, как ворота для гаражей, для облицовки балконов и т.п.). Трудновоспламеняющееся, погодоустойчивое акриловое стекло (акрилглас) годится для изготовления световых панелей и куполов. Ими можно застеклять большие поверхности, срок службы которых продолжителен.

Все большее значение приобретают пластмассы в строительстве трубопроводов, поскольку в этом случае не возникает проблем коррозии. Усиленные стекловолокном трубопроводы пригодны для доставки газов под давлением 15 бар и для транспортировки химических веществ, способных вызвать коррозию. Для этих целей применяют поливинилхлорид, полиэфиры, полибутилен, полиэтилен и полипропилен.

В качестве уплотнителей швов между бетонными деталями в строительстве можно использовать полиуретаны, силиконы, акрилаты, комбинации эпоксидных соединений (их часто называют эпоксидными смолами, хотя термин «смолы» несколько устарел), все большее значение приобретают для этих целей термопласты. Ими можно не только уплотнять швы на фасадах зданий из стали и легких металлов, но и «склеивать» мосты, а также скреплять части сооружений, полностью находящихся под водой (например, в плавательных бассейнах). Хорошие перспективы для использования в этой области имеют эпоксидные смолы. Они характеризуются наличием так называемых эпоксигрупп и гидроксильных групп. Присутствие этих групп придает эпоксидным соединениям ценные для использования в строительстве свойства. Эпоксидные смолы прочно сцепляются с поверхностью бетона и устойчивы к атмосферным воздействиям. Их можно наносить на влажные поверхности бетона, так как эпоксидные соединения благодаря наличию гидроксильных групп менее гидрофобны, чем многие другие полимерные материалы. Кроме того, эпоксигруппы способны взаимодействовать с ионами кальция, что увеличивает сцепление полимера с поверхностью бетона.

Наибольший удельный вес в строительстве занимают полимерные материалы для изготовления полов; самым популярным из них является поливинилхлоридный линолеум – как рулонный, так и плиточный; реже применяют особо твердые древесноволокнистые и древесностружечные плитки и плиты на основе мочевино-феноло-формальдегидных или мочевино-меламино-формальдегидных связующих. Весьма широко в качестве тепло– и звукоизоляционных материалов строители применяют пенопласты (пенополистирол, пеноуретан и др.). Растут масштабы использования пластмасс в качестве кровельного материала. Особый интерес в этом плане представляют светопропускающие стеклопластики, которые можно использовать также для изготовления стен. Значительная часть всех потребляемых в строительстве пластмасс идет для производства сантехники (трубы из полиэтилена, стеклопластиковые ванны и т.д.). Все чаще применяют отделочные пластмассы, различные модификации полистирола. Следует также учесть герметизующие материалы; из них заслуженной популярностью пользуются пленочные, в частности полиэтилен, а также листы стеклопласта.

Одноэтажные дома из пластмасс могут быть построены с применением всего двух основных типов деталей, а именно элементов стен и элементов крыши. Стены толщиной всего 8 – 10 мм состоят из двух слоев пластика – полиэфира и стекловолокна, между которыми проложен жесткий пенопласт. Звуко– и теплоизоляция соответствует кирпичной кладке толщиной 1,3 м. Свободнонесущая конструкция полиэфирной крыши позволяет увеличить ширину пролетов между стенами, так что отпадает необходимость во внутренней опорной стене. Таким образом, вся жилая площадь становится полезной и появляется возможность ее индивидуального планирования с помощью передвижных или шкафных перегородок. Имея в распоряжении только 40 строительных деталей такой дом можно построить менее чем за 12 часов.

В Лондоне в 1966 – 1969 годах были возведены два 21-этажных здания из пластмасс с использованием стальных конструкций. Эти здания по существу представляют собой стальную этажерку с жилыми «ящиками» из пластмасс. Дома из пластмасс имеются и в других городах, например в Париже и Брюсселе. Практически не нуждаются в чистке сооружения из стекловолокна и полиэфира, они особенно хороши для промышленных установок. Годятся они и как общественные здания и гостиницы.

Пластмассы располагают идеальными возможностями для осуществления строительства из облегченных конструкций. Этот принцип выгоден тем, что позволяет значительно экономить материалы. Из многочисленных искусственных материалов в наибольшей мере отвечают требованиям строительства пенопласты. Пенопласты в равной степени могут быть хороши и как высокоэластичные, и как очень твердые материалы.

Около 50% всех пенопластов изготавливается в настоящее время из полиуретана. На основе однотипных химических реакций, заключающихся в обработке компонента, содержащего гидроксильную группу, диизоцианатом, можно получить как термопласты, так и реактопласты, но свойства их зависят от выбора исходного компонента. Смотря по тому, какие многоатомные спирты и дополнительные компоненты взяты для превращения, можно получить, например, пенопласт настолько мягкий, что он годится на подушки, или настолько твердый, что из него можно сделать тару или изготовить ценные изоляторы для холодильников. Между этими крайностями находятся полужесткие материалы, спектр применения которых простирается от кузовостроения до обувной промышленности. Из сверхтвердых «структурированных» пен можно формовать крупные детали с массивными краевыми зонами – детали автомобилей, части мебели. Эти и другие изделия из полиуретана можно изготавливать непосредственно из вещества, получившегося в результате реакции, причем готовая продукция отвечает требованиям, предъявленным к качеству материала и его оформлению.

Пластмассы в спорте.

Пластмассы широко используются в спортивной индустрии, например их применяют в таком виде спорта, как прыжки с шестом: из пластмасс изготавливают сами шесты, а также маты, которые предохраняют спортсменов от травм при падении.

Пластмассы сказали свое слово и в производстве лыж. Первоначально лыжи делали из ясеневых и буковых досок, а также из древесины гикори (род деревьев семейства ореховых). В 50-е годы начали применять синтетические материалы для скользящих поверхностей лыж, с 1960 года пошли в ход  пластмассы армированные стекловолокном, а с 1967 года стали широко использоваться полиуретановые пенопласты. Благодаря тому, что нижняя поверхность лыж делается из полиэтилена, чешуйки которого обеспечивают необходимое сцепление со снегом, лыжник может подъемы и любые неровности размером более 35 см.

В настоящее время исключительно из пластмасс  изготавливается спортивная обувь всех видов, также пластмассы используются для изготовления спортивного инвентаря.

Пластмассы используются для оформления спортивных площадок и стадионов. Существуют материалы – заменители травы, прошедшие испытания на теннисных кортах и огромных стадионах. На первый взгляд их не отличить от настоящего газона, а по износоустойчивости они значительно превосходят его. Синтетические «травы» водонепроницаемы, устойчивы к жаре и к холоду, не вытаптываются и не гниют.

Пластические массы широко применяются для изготовления беговых дорожек. Применение искусственных материалов для беговых дорожек получило официальное одобрение Всемирной федерации легкой атлетики в 1967 году, когда такие дорожки впервые были введены на Панамериканских играх в Виннипеге.

Заключение.

В настоящее время пластмассы получили широчайшей распространение. Причиной такого распространения являются их низкая цена и легкость переработки, а также свойства, которые в некоторых случаях уникальны. Пластмассы применяют в электротехнике, авиастроении, ракетной и космической технике, машиностроении, производстве мебели, легкой и пищевой промышленности, в медицине и строительстве, – в общем, пластмассы используются практически во всех отраслях народного хозяйства. Пожалуй, единственная область, где использование пластмасс пока ограничено – это техника высоких температур. Но в скором времени они проникнут и сюда: уже получены пластмассы, выдерживающие температуры 2000–2500°C. Развитие химических технологий, помогающих создавать вещества с заданными свойствами, позволяет сказать, что пластмассы один из важнейших материалов будущего.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Список используемой литературы:

1)<span style=«font: 7pt „Times New Roman“;»>  

Поллер “Химия на пути в третье тысячелетие”, 1979

2)<span style=«font: 7pt „Times New Roman“;»>  

Ратинов, Иванов “Химия в строительстве”, 1969

3)<span style=«font: 7pt „Times New Roman“;»>  

“Энциклопедический словарь юного техника”, 1988

4)<span style=«font: 7pt „Times New Roman“;»>  

“Советский энциклопедический словарь”, 1987 />

<span style=«font-size: 10pt; font-family: „Times New Roman“;»>[1]

Американские ученые в 1980 году обнаружили природную полиэфирную пластмассу в жилищах пчел рода Colletes, живущих в земле. Лак, покрывающий стенки сот, предохраняет от порчи запасы пыльцы и нектара, которыми питаются личинки пчел. Это первый случай обнаружения в природе подобного вещества.

www.ronl.ru

30. Физико-химические свойства пластмасс.

Пластмассы не подвергаются коррозии, они стойки против действия растворов слабых кислот и щелочей, а некоторые пластмассы, например из полиэтилена, полиизобутилена, полистирола, поливинилхлорида, стойки к воздействию даже концентрированных растворов кислот, солей и щелочей. Являются плохими проводниками тепла, в связи с этим пластмассы широко используют в качестве теплоизоляционных материалов. Пластмассы хорошо окрашиваются в любые цвета и долго сохраняют цвет. Водопоглощение пластмасс очень низкое — у плотных материалов оно не превышает 1%.

Пластмассы обладают рядом недостатков. Невысокая теплостойкость.  Со временем некоторые пластмассы стареют, т. е. происходит постепенное их разрушение (деструкция), снижаются прочность и твердость, появляются хрупкость, потемнение. Старение пластмасс происходит под действием света, воздуха, температуры. При возгорании многие пластмассы выделяют токсические вещества.

31. Полимерные строительные материалы на основе полиолефинов

К таким материалам относятся полиэтилен, полипропилен, поливинилхлорид.

Полиэтилен характеризуется высокой хим. стойкостью. Не растворяется в щелочах и кислотах. Он не имеет запаха и вкуса. Полиэтилен бывает высокого и низкого давления (в зависимости от способа получения). ПЭВД отличается меньшей теплостойкостью. ПЭВН имеет большую жесткость и прочность. Используется для изгот. плёнок, труб, соед.деталей, изоляции для проводов.

Полипропилен имеет похожие свойства, но отлич. большей теплостойкостью и жёсткостью, меньшей морозостойк. Диапазон темп. от 70 до 160 градусов. Используется для получения пленок, деталей различного оборудования, в кач-ве изоляционного мат-ла, как компонентный материал.

ПВХ или поливинилхлорид характ. высокой плотностью, хим.стойкостью к кислотам и щелочи, хорошие диэлектрические свойства . Бывает жёсткий (винипласт) и мягкий. Винипласт жесткий, непрозрачный мат-л. Из него изгот. канализац.трубы, оконные рамы, сантехнику. Из мягкого ПВХ изгот. разноцветные пленки, шланги, изоляцию для проводов.

32. Полимерные строительные материалы на основе полистирола и поликарбоната: свойства, характеристика их ассортимента, области применения.

Полистирол – это прозрачный, достаточно хрупкий полимер, который не выдерживает высоких температур (до 80°С). Для улучшения его св-в добавляют другие мономерные звенья (сополимеры).

Применение: В производстве строительных материалов в качестве тепло- и звукоизоляционных материалов.

Ассортимент: Пенополистирол или, по-другому, пенопласт.

Поликарбонаты – характеризуются высокой температурой плавления (≈250°С) и обладают высокой морозостойкостью ( до -100°С). Обладают хорошими прочностными св-ми, особенно высокоустойчив к ударным нагрузкам. Устойчивы к ультрафиолетовым лучам и высоким перепадам температур.

Применение: Материалы на основе поликарбоната применяют для деталей уплотнений, клапанов и других элементов, работающих в вакууме, в инертной газовой и других средах при температурах –50 ¸ 110 ºС. Например в производстве кровельных материалов для обустройства козырьков или фонарей.

Ассортимент: Листы поликарбоната.

33. Смолы для изготовления строительных материалов и изделий. Смолы активно применяются в строй промыш-ти. В зависимости от свойств начального сырья, способа изготовления и назначения смолы поставляются из произв-ва в виде вязких жидкостей, порошков или гранул.Фенолформальдегидная смола является смолой синтетического происхождения и используется для изготовления древесно-стружечных плит. Фенол-ная смола обеспечивает высокую стойкость и прочность клеевых соединений при воздействии горячей и теплой воды, поэтому ее относят к смолам повышенной водостойкости. Такая смола твердеет довольно быстро и имеет довольно высокую прочность при склеивании, а также светлую окраску. Карбамидоформальдегидные смолы нашли широкое распространение в различных сферах производства и строительства. Они применяются при производстве карбам-ного пенопласта, ДСП и ДВП, а также фанеры. Кроме того они применяются при изготовлении спец-х влагопрочных сортов бумаги и картона. Эпоксидные смолы — одна из разновидностей синтетических смол, широко используемых при производстве лакокрасочных материалов, клеев, используются как связующие при производстве слоистых пластиков на основе стеклоткани, таких как стеклотекстолит, трубки, цилиндры стеклотекстолитовые. Отрасли применения эпок. смол включают в себя электротех-ю и радиоэлектронную промыш-ть, авиа-, судо- и машиностроение, а также в строительство, где они используются как компонент заливочных и пропиточных компаундов, клеев, герметиков, связующих для армированных пластиков. Эпоксидная смола нашла эффективное применение для гидроизоляции пола и стен подвальных помещений и бассейнов. Используется в качестве краски и материала для внутренней и наружной отделки зданий, в качестве пропитки для повышения прочности и гидроизоляции пористых материалов: бетон, дерево и другие.

studfiles.net


© 2005-2018, Национальный Экспертный Совет по Качеству.

Высокое качество системы сертификации Центрстройэкспертиза-Тест подтверждено ВОК



Ассоциация СРО Единство