ДОМАШНИЙ БИЗНЕС

БИЗНЕС БЕЗ ВЛОЖЕНИЙ

БИЗНЕС ДЛЯ ЖЕНЩИН

МАЛЫЙ БИЗНЕС

БИЗНЕС-ПЛАН

ИДЕИ ДЛЯ БИЗНЕСА

БИЗНЕС-СОВЕТЫ

БИЗНЕСМЕНАМ

ИНТЕРНЕТ-БИЗНЕС

Большая Энциклопедия Нефти и Газа. Пластмасса из чего состоит


Пластмасса | Virtual Laboratory Wiki

Файл:Syndiotactic polypropene.png Файл:Plastic household items.jpg

Пластма́ссы (пласти́ческие ма́ссы) или пла́стики — органические материалы, основой которых являются синтетические или природные высокомолекулярные соединения (полимеры). Исключительно широкое применение получили пластмассы на основе синтетических полимеров.

Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму. Процесс формования сопровождается переходом пластически деформируемого (вязкотекучего) состояния в стеклообразное состояние.

    Первая пластмасса была получена английским металлургом и изобретателем Александром Парксом в 1855 году [1]. Паркс назвал её паркезин (позже получило распространение другое название — целлулоид). Паркезин был впервые представлен на Большой Международной выставке в Лондоне в 1862 году. Развитие пластмасс началось с использования природных пластических материалов (жевательной резинки, шеллака), затем продолжилось с использованием химически модифицированных природных материалов (резина, нитроцеллюлоза, коллаген, галалит) и, наконец, пришло к полностью синтетическим молекулам (бакелит, эпоксидная смола, поливинилхлорид, полиэтилен и другие).

    Паркезин являлся торговой маркой первого искусственного пластика и был сделан из целлюлозы, обработанной азотной кислотой и растворителем. Паркезин часто называли искусственной слоновой костью. В 1866 году Паркс создал фирму Parkesine Company для массового производства материала. Однако, в 1868 году компания разорилась из-за плохого качества продукции, так как Паркс пытался сократить расходы на производство. Преемником паркезина стал ксилонит (другое название того же материала), производимый компанией Даниэля Спилла, бывшего сотрудника Паркса, и целлулоид, производимый Джоном Весли Хайатом.

    В зависимости от природы полимера и характера его перехода из вязкотекучего в стеклообразное состояние при формовании изделий пластмассы делят на:

    • Термопласты (термопластичные пластмассы) — при нагреве расплавляются, а при охлаждении возвращаются в исходное состояние;
    • Реактопласты (термореактивные пластмассы) — в начальном состоянии имеют линейную структуру макромолекул, а при некоторой температуре отверждения приобретают сетчатую. После отверждения не могут переходить в вязкотекучее состояние. Рабочие температуры выше, но при нагреве разрушаются и при последующем охлаждении не восстанавливают своих исходных свойств.

    Также газонаполненные пластмассы — вспененные пластические массы, обладающие малой плотностью.

    Основные механические характеристики пластмасс те же, что и для металлов. Пластмассы характеризуются малой плотностью (0,85—1,8 г/см³), чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании (часто с предварительным размягчением) они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований, отношение к органическим растворителям различное (в зависимости от химической природы полимера). Физиологически почти безвредны. Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, тепло- и светостабилизаторов, облучения и др., а также варьированием сырья, например использование соответствующих полиолов и диизоцианатов при получении полиуретанов.

    Твёрдость пластмасс определяется по Бринеллю при нагрузках 50—250 кгс на шарик диаметром 5 мм.

    Теплостойкость по Мартенсу — температура, при которой пластмассовый брусок с размерами 120 × 15 × 10 мм, изгибаемый при постоянном моменте, создающем наибольшее напряжение изгиба на гранях 120 × 15 мм, равное 50 кгс/см², разрушится или изогнётся так, что укреплённый на конце образца рычаг длиной 210 мм переместится на 6 мм.

    Теплостойкость по Вика — температура, при которой цилиндрический стержень диаметром 1,13 мм под действием груза массой 5 кг (для мягких пластмасс 1 кг) углубится в пластмассу на 1 мм.

    Температура хрупкости (морозостойкость) — температура, при которой пластичный или эластичный материал при ударе может разрушиться хрупко.

    Для придания особых свойств пластмассе в нее добавляют пластификаторы (силикон, дибутилфталат, ПЭГ и т. п.), антипирены (дифенилбутансульфокислота), антиоксиданты (трифенилфосфит, непредельные углеводороды)

    Производство синтетических пластмасс основано на реакциях полимеризации, поликонденсации или полиприсоединения низкомолекулярных исходных веществ, выделяемых из угля, нефти или природного газа. При этом образуются высокомолекулярные связи с большим числом исходных молекул (приставка «поли-» от греческого «много», например этилен-полиэтилен).

    Методы обработки Править

    Механическая обработка Править

    Пластические массы, по сравнению с металлами, обладают повышенной упругой деформацией, вследствие чего при обработке пластмасс применяют более высокие давления, чем при обработке металлов. Применять какую-либо смазку, как правило, не рекомендуют; только в некоторых случаях при окончательной обработке допускают применение минерального масла. Охлаждать изделие и инструмент следует струей воздуха.

    Пластические массы более хрупки, чем металлы, поэтому при обработке пластмасс режущими инструментами надо применить высокие скорости резания и уменьшать подачу. Износ инструмента при обработке пластмасс значительно больше, чем при обработке металлов, почему необходимо применять инструмент из высокоуглеродистой или быстрорежущей стали или же из твердых сплавов. Лезвия режущих инструментов надо затачивать, по возможности, более остро, пользуясь для этого мелкозернистыми кругами.

    Пластмасса может быть обработана на токарном станке, может фрезероваться. Для распиливания может применяться ленточные пилы, дисковые пилы и карборундовые круги.

    Сварка Править

    Соединение пластмасс между собой может осуществляться механическим путем с помощью болтов, заклепок, склеиванием, растворением с последующим высыханием, а также при помощи сварки. Из перечисленных способов соединения только при помощи сварки можно получить соединение без инородных материалов, а также соединение, которое по свойствам и составу будет максимально приближено к основному материалу. Поэтому сварка пластмасс нашла применение при изготовлении конструкций, к которым предъявляются повышенные требования к герметичности, прочности и другим свойствам.

    Процесс сварки пластмасс состоит в образовании соединения за счет контакта нагретых соединяемых поверхностей. Он может происходить при определенных условиях:

    1. Повышенная температура. Ее величина должна достигать температуры вязкотекучего состояния.
    2. Плотный контакт свариваемых поверхностей.
    3. Оптимальное время сварки — время выдержки.

    Также следует отметить, что температурный коэффициент линейного расширения пластмасс в несколько раз больше, чем у металлов, поэтому в процессе сварки и охлаждения возникают остаточные напряжения и деформации, которые снижают прочность сварных соединений пластмасс.

    На прочность сварных соединений пластмасс большое влияние оказывают химический состав, ориентация макромолекул, температура окружающей среды и другие факторы.

    Применяются различные виды сварки пластмасс:

    1. Сварка газовым теплоносителем с присадкой и без присадки
    2. Сварка экструдируемой присадкой
    3. Контактно-тепловая сварка оплавлением
    4. Контактно-тепловая сварка проплавлением
    5. Сварка в электрическом поле высокой частоты
    6. Сварка термопластов ультразвуком
    7. Сварка пластмасс трением
    8. Сварка пластмасс излучением
    9. Химическая сварка пластмасс

    Как и при сварке металлов, при сварке пластмасс следует стремиться к тому, чтобы материал сварного шва и околошовной зоны по механическим и физическим свойствам мало отличался от основного материала. Сварка термопластов плавлением, как и другие методы их переработки, основана на переводе полимера сначала в высокоэластическое, а затем в вязкотекучее состояние и возможна лишь в том случае, если свариваемые поверхности материалов (или деталей) могут быть переведены в состояние вязкого расплава. При этом переход полимера в вязкотекучее состояние не должен сопровождаться разложением материала термодеструкцией.

    При сварке многих пластмасс выделяются вредные пары и газы. Для каждого газа имеется строго определенная предельно доступная его концентрация в воздухе (ПДК). Например, для диоксида углерода ПДК равна 20, для ацетона — 200, а для этилового спирта — 1000 мг/м³.

    Материалы на основе пластмасс Править

    Мебельные пластмассы Править

    Пластик, который используют для производства мебели, получают путем пропитки бумаги термореактивными смолами. Производство бумаги является наиболее энерго- и капиталлоемким этапом во всем процессе производства пластика. Используется 2 типа бумаг: основой пластика является крафт-бумага (плотная и небеленая) и декоративная (для придания пластику рисунка). Смолы подразделяются на фенолформальдегидные, которые используются для пропитки крафт-бумаги, и меламиноформальдегидные, которые используются для пропитки декоративной бумаги. Меламиноформальдегидные смолы производят из меламина, поэтому они стоят дороже.

    Мебельный пластик состоит из нескольких слоёв. Защитный слой — оверлей — практический прозрачный. Изготавливается из бумаги высокого качества, пропитывается меламиноформальдегидной смолой. Следующий слой — декоративный. Затем несколько слоев крафт-бумаги, которая является основой пластика. И последний слой — компенсирующий (крафт-бумага, пропитанная меламиноформальдегидными смолами). Этот слой присутствует только у американского мебельного пластика.

    Готовый мебельный пластик представляет из себя прочные тонированные листы толщиной 1-3 мм. По свойствам он близок к гетинаксу. В частности, он не плавится от прикосновения жалом паяльника, и, строго говоря, не является пластической массой, так как не может быть отлит в горячем состоянии, хотя и поддается изменению формы листа при нагреве. Мебельный пластик широко использовался в XX веке для отделки салонов вагонов метро.

    Система маркировки пластика Править

    Для обеспечения утилизации одноразовых предметов в 1988 году Обществом Пластмассовой Промышленности была разработана система маркировки для всех видов пластика и идентификационные коды. Маркировка пластика состоит из 3-х стрелок в форме треугольника, внутри которых находится число, обозначающая тип пластика. Часто при маркировке изделий под треугольником указывается буквенная маркировка (в скобках указана маркировка русскими буквами):

    Международные универсальные коды переработки пластмасс Значок Англоязычное название Русское название Примечание
    50px PET или PETE ПЭТ, ПЭТФ Полиэтилентерефталат Обычно используется для производства тары для минеральной воды, безалкогольных напитков и фруктовых соков, упаковки, блистеров, обивки. Такие пластики являются потенциально опасными для пищевого использования.
    50px PEHD или HDPE ПЭНД Полиэтилен высокой плотности, полиэтилен низкого давления Производство бутылок, фляг, полужёсткой упаковки. Считается безопасными для пищевого использования.
    50px PVC ПВХ Поливинилхлорид Используется для производства труб, трубок, садовой мебели, напольных покрытий, оконных профилей, жалюзи, изоленты, тары для моющих средств и клеёнки. Материал является потенциально опасным для пищевого использования, поскольку может содержать диоксины, бисфенол А, ртуть, кадмий.
    50px LDPE и PELD ПЭВД Полиэтилен низкой плотности, полиэтилен высокого давления Производство брезентов, мусорных мешков, пакетов, пленки и гибких ёмкостей. Считается безопасным для пищевого использования.
    50px PP ПП Полипропилен Используется в автомобильной промышленности (оборудование, бамперы), при изготовлении игрушек, а также в пищевой промышленности, в основном при изготовлении упаковок. Распространены полипропиленовые трубы для водопроводов. Считается безопасным для пищевого использования.
    50px PS ПС Полистирол Используется при изготовлении плит теплоизоляции зданий, пищевых упаковок, столовых приборов и чашек, коробок CD и прочих упаковок (пищевой плёнки и пеноматериалов), игрушек, посуды, ручек и так далее. Материал является потенциально опасным, особенно в случае горения, поскольку содержит стирол.
    50px OTHER или О Прочие К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы. В основном это поликарбонат. Поликарбонат не является токсичным для окружающей среды, но может содержать опасный для человека бисфенол А[2]. Используется для изготовления твёрдых прозрачных изделий, как например детские рожки.
    Файл:Albatross chick plastic.jpg

    Скопления отходов из пластмасс образуют в Мировом океане под воздействием течений особые мусорные пятна. На данный момент известны пять больших скоплений мусорных пятен — по два в Тихом и Атлантическом океанах, и один — в Индийском океане. Данные мусорные круговороты в основном состоят из пластиковых отходов, образующихся в результате сбросов из густонаселённых прибрежных зон континентов. Руководитель морских исследований Кара Лавендер Ло из Ассоциации морского образования (англ. Sea Education Association; SEA) возражает против термина «пятно», поскольку по своему характеру — это разрозненные мелкие куски пластика. Пластиковый мусор опасен ещё и тем, что морские животные, зачастую, могут не разглядеть прозрачные частицы, плавающие по поверхности, и токсичные отходы попадают им в желудок, часто становясь причиной летальных исходов[3][4].

    Взвесь пластиковых частиц напоминает зоопланктон, и медузы или рыбы могут принять их за пищу. Большое количество долговечного пластика (крышки и кольца от бутылок, одноразовые зажигалки) оказывается в желудках морских птиц и животных[5], в частности, морских черепах и черноногих альбатросов[6]. Помимо прямого причинения вреда животным[7], плавающие отходы могут впитывать из воды органические загрязнители, включая ПХБ (полихлорированные бифенилы), ДДТ (дихлордифенилтрихлорметилметан) и ПАУ (полиароматические углеводороды). Некоторые из этих веществ не только токсичны[8] — их структура сходна с гормоном эстрадиолом, что приводит к гормональному сбою у отравленного животного[6].

    Пластиковые отходы должны перерабатываться, поскольку при сжигании пластика выделяются токсичные вещества, а разлагается пластик за 100—200 лет.

    Способы переработки пластика:

     • Пиролиз  • Гидролиз  • Гликолиз  • Метанолиз

    В декабре 2010 года Ян Байенс и его коллеги из университета Уорика предложили новую технологию переработки практически всех пластмассовых отходов. Машина с помощью пиролиза в реакторе с кипящим слоем при температуре около 500° С и без доступа кислорода разлагает куски пластмассового мусора, при этом многие полимеры распадаются на исходные мономеры. Далее смесь разделяется перегонкой. Конечным продуктом переработки являются воск, стирол, терефталевая кислота, метилметакрилат и углерод, которые являются сырьём для лёгкой промышленности. Применение этой технологии позволяет сэкономить средства, отказавшись от захоронения отходов, а с учётом получения сырья (в случае промышленного использования) является быстро окупаемым и коммерчески привлекательным способом утилизировать пластмассовые отходы[9].

    Пластики на основе фенольных смол, а также полистирол и полихлорированный бифенил могут разлагаться грибками белой гнили. Однако для утилизации отходов этот способ коммерчески неэффективен - процесс разрушения пластика на основе фенольных смол может длиться многие месяцы[10].

    1. Дзевульский В. М. Технология металлов и дерева. — М.: Государственное издательство сельскохозяйственной литературы. 1995.
    1. ↑ Edward Chauncey Worden. Nitrocellulose industry. New York, Van Nostrand, 1911, p. 568. (Parkes, English patent #2359 in 1855)
    2. ↑ Biello D (2008-02-19). "Plastic (not) fantastic: Food containers leach a potentially harmful chemical". Scientific American 2.
    3. ↑ Ученые обнаружили свалку пластика на севере Атлантики (рус.). www.oceanology.ru (5 марта 2010). Архивировано из первоисточника 24 августа 2011. Проверено 18 ноября 2010.
    4. ↑ Смертельный пластик (рус.). Олег Абарников, upakovano.ru (29 октября 2010). Архивировано из первоисточника 24 августа 2011. Проверено 18 ноября 2010.
    5. ↑ Moore, Charles. Across the Pacific Ocean, plastics, plastics, everywhere, Natural History Magazine (November 2003).
    6. ↑ 6,06,1Moore, Charles. Great Pacific Garbage Patch, Santa Barbara News-Press (2002-10-02).
    7. ↑ Rios, L. M.; Moore, C. and Jones, P. R. (2007). "Persistent organic pollutants carried by Synthetic polymers in the ocean environment". Marine Pollution Bulletin 54: 1230–1237. DOI:10.1016/j.marpolbul.2007.03.022.
    8. ↑ Tanabe, S.; Watanabe, M., Minh, T.B., Kunisue, T., Nakanishi, S., Ono, H. and Tanaka, H. (2004). "PCDDs, PCDFs, and coplanar PCBs in albatross from the North Pacific and Southern Oceans: Levels, patterns, and toxicological implications". Environmental Science & Technology 38: 403–413. DOI:10.1021/es034966x.
    9. ↑ Испытана машина для переработки любого пластика (рус.). Membrana (28 декабря 2010). Архивировано из первоисточника 24 августа 2011. Проверено 30 декабря 2010.
    10. ↑ Белая гниль разрушает долговечный пластик (рус.). Membrana (7 июня 2006). Архивировано из первоисточника 24 августа 2011. Проверено 30 декабря 2010.

    Эта страница использует содержимое раздела Википедии на русском языке. Оригинальная статья находится по адресу: Пластмасса. Список первоначальных авторов статьи можно посмотреть в истории правок. Эта статья так же, как и статья, размещённая в Википедии, доступна на условиях CC-BY-SA .

    ru.vlab.wikia.com

    Изобретение пластмассы | Великие открытия человечества

    Одной из отличительных черт наших дней является широкое производство и использование пластмасс. Практически все натуральные волокна, материалы и смолы имеют сегодня свои искусственные заменители. Хотя говорить сегодня однозначно о пластмассах, как заменителях нельзя, учитывая то, что многие современные пластмассы по своим свойствам превосходят природные материалы. Многие из них обладают такими ценными и важными качествами, аналогов которым в природе не существует. Производство пластмасс намного быстрее развивается, чем производство металлов. Развитие и применение современных химических технологий позволяет создавать вещества с заранее запрограммированными свойствами, что свидетельствует об огромном значении пластмассы, как одного из важнейших материалов будущего. Слово «пластичность» в переводе с греческого означает «податливый, годный для лепки». Многие века таким материалом была глина, однако сегодня под пластическими массами (пластмассами) подразумевают материалы, произведенные на основе полимеров.

    Пластмасса представляет собой сложное органическое соединение, которое включает несколько компонентов, важнейшим из них является искусственная смола. Искусственную смолу получают в результате реакции конденсации или реакции полимеризации. В первом случае новое вещество образуется при взаимодействии двух или нескольких веществ, помимо этого выделяются и побочные продукты (аммиак, вода и др.). Во втором случае при взаимодействии молекул одного и того же вещества образуется новое вещество-полимер, при этом побочный продукт не выделяется. Смола связывает составные части пластмассы и дает ей такие качества, как пластичность, водостойкость, твердость и другие механические и электроизоляционные свойства. В состав пластмасс входят разные добавки: пластификаторы, наполнители, красители. В качестве наполнителей применяют как органические (волокна, опилки, ткани, и др.), так и неорганические (шифер, графит, асбест и др.) вещества. Наполнители придают пластмассе прочность, термостойкость, повышают электросопротивление. Кроме этого, наполнители, являясь отходами различных производств, снижают стоимость пластмассы. Пластификаторы увеличивают пластичность полимера и придают дополнительную пластичность готовой пластмассе, что облегчает процесс ее формирования. Благодаря различным добавкам пластмассу можно сделать электропроводящей, окрасить пластмассу в необходимый цвет, придать ей пористость или другие необходимые свойства.

    В первой половине 19 века начинается производство пластмасс, основой которых являются искусственные материалы. Одной из первых пластмасс был камптуликон, выпущенный в 1830 году. Однако из-за высокой цены на каучук, входившим в ее состав, этот вид пластмассы не получил широкого применения. Лишь в 1863 году англичанин Уолтон нашел заменитель каучуку — линоксин и положил начало выпуску линолеума. В 1862 году в Англии был изобретен паркезин, но его недостатком была невысокая прочность.

    Широчайшее применение пластмасс произошло с изобретением в 1869 году братьями Хайет целлулоида на основе целлюлозы. Целлулоид можно было окрашивать в различные цвета, его можно было использовать как прозрачную пленку и главное, он обладал высокой прочностью. С 1872 года началось его промышленное производство. Из него изготавливались гребешки, пуговицы, пояса, игрушки, фото- и кинопленка.

    В 1872 году немецкий ученый Байер получил новое смолообразующее вещество, соединив фенол с формальдегидом. Однако, в связи с высокой стоимостью формальдегида открытие не получило широкого применения. Промышленное производство фенол-формальдегидовых смол наладилось лишь в начале 20-го века после того, как англичанин Бакеланд изобрел способ получения из этого сырья фенопластов. Пластмассы на основе фенол-формальдегидовых смол были названы в честь их изобретателя бакелитами. Фенопласты нашли широчайшее использование во многих отраслях промышленности и довольно долго занимали первое место среди пластмасс. Их отличала высокая теплостойкость, водостойкость, отличные изоляционные качества и высокая механическая прочность.

    Еще одной из разновидностей пластмасс, получивших широкое распространение, стали карбамидные пластмассы. Карбамидная смола изготавливалась на основе мочевины. В 1918 году патент на изготовление карбамидной смолы из мочевины и формальдегида получил чешский химик Джон. Смола была бесцветной, легко окрашивалась в различные цвета, теплостойкой, малогорючей, прочной, обладала способностью пропускать как световые, так и ультрафиолетовые лучи. Карбамидные пластмассы широко используют в качестве отличного отделочного и декоративного материала.

    В дальнейшем было синтезировано большое количество новых пластмасс. Широкое распространение получили прозрачные пластмассы, обладающие высокой прочностью и успешно заменяющие хрупкое стекло. Легкое, обладающее высокой прочностью органическое стекло производят из полиметилметакрилата, а для высокочастотной изоляции незаменимым материалом стал полистирол. Мир, который нас окружает сегодня, во многом выполнен из пластмассы, это -  материал будущего. Единственным существенным недостатком  является большой период ее полураспада, уничтожение пластмассы наносит большой вред окружающей среде с экологической точки зрения.

    mirnovogo.ru

    Основа - пластмасса - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Основа - пластмасса

    Cтраница 1

    Основа пластмасс - синтетические смолы, органические вещества, которые по своему строению стоят гораздо ближе к живым организмам, чем неорганические, и поэтому весьма чувствительны к теплу.  [1]

    Основа пластмасс - смолы - представляют собой твердые, хрупкие, высокоплавкие вещества. Они с трудом поддаются обработке п редко обладают теми свойствами, которые требуются от пластмасс. Но если тонкоизмельченную смолу сметать с пластификатором и слегка нагреть, образуется пастообразная масса, способная заполнить форму любой конфигурации. При застывании пасты получается готовое изделие, не требующее обработки. Таким образом, именно при совмещении смолы с пластификатором появляются те свойства, за которые ценятся пластмассы. Пластификатор превращает смолу в гибкий, низколлав-кий, но достаточно твердый, короче говоря, пластичный материал. Пластификатор - вторая по важности составная часть пластмасс, во многом определяющая их механические и физико-химические свойства.  [2]

    Основа пластмасс - смолы - - представляют собой твердые, хрупкие, высокопланкпе вещества. Они с трудом поддаются обработке и редко обладают теми свойствами, которые требуются от пластмасс. Но если тонкопзмельчен-ную смолу смешать г пластификатором п слегка нагреть, образуется пастообразная масса, способная заполнить форму любой конфигурации. При застывании пасты получается готовое изделие, не требующее обработки. Таким образом, именно при совмещении смолы с пластификатором появляются те свойства, за которые ценятся пластмассы. Пластификатор превращает смолу в гибкий, низкоотлав-кий, но достаточно твердый, короче говоря, пластичный материал. Пластификатор - вторая по важности составная часть пластмасс, во многом определяющая их механические п физико-химические свойства.  [3]

    Основу пластмасс составляют полимеры - высокомолекулярные соединения, молекулы которых состоят из одинаковых многократно повторяющихся структурных элементов. Полимеры, как и другие высокомолекулярные соединения, характеризуются большим молекулярным весом. Некоторое количество этих веществ может оставаться и в окончательной продукции.  [4]

    Основу пластмасс составляют полимеры самого различного строения, но даже в пределах одной полимерной основы их свойства можно целенаправленно изменять в довольно широком диапазоне. Благодаря высоким эксплуатационным свойствам и легкости переработки в изделия пластмассы выгодно отличаются от природных материалов, успешно конкурируют с ними, а в ряде случаев являются просто незаменимыми.  [6]

    Основу любых пластмасс составляют полимерные соединения.  [7]

    Основой пластмасс являются полимерные связующие вещества. Многие пластмассы состоят только из связующего вещества.  [8]

    Основой пластмасс являются высокомолекулярные соединения, которые состоят из гигантских молекул линейной, разветвленной или сетчатой ( трехмерной) структуры. В большинстве случаев эти молекулы содержат многократно повторяющиеся структурные элементарные звенья ( группы атомов), соединенные силами химической связи. Такие вещества называются полимерами, а исходные низкомолекулярные продукты - мономерами.  [9]

    Основой пластмасс являются высокополимерные органические вещества, чаще всего смолы и подобные им продукты. При повышенных температуре и давлении такие материалы способны переходить в пластическое ( вязкое, текучее) состояние, что используется в технике для формования различных изделий из.  [10]

    Основой пластмасс являются высокомолекулярные соединения, которые состоят из гигантских молекул линейной, разветвленной или сетчатой ( трехмерной) структуры. В большинстве случаев эти молекулы содержат многократно повторяющиеся структурные элементарные звенья ( группы атомов), соединенные силами химической связи. Такие вещества называются полимерами, а исходные низкомолекулярные продукты - мономерами. Молекулярная масса полимеров достигает десятков и сотен тысяч единиц, а в некоторых случаях даже и нескольких миллионов.  [11]

    Основой пластмассы являются синтетические смолы, связывающие остальные компоненты порошка и придающие пластмассе электроизоляционные свойства, способность переходить в пластическое состояние при нагреве и полиме-ризоваться.  [12]

    На основе пластмасс изготовляются материалы для покрытия полов, внутренней отделки стен, для строительных конструкций, погонажных материалов, клеев и мастик.  [13]

    По природе основы пластмассы разделяют на термореактивные, которые в процессе изготовления под влиянием высокой температуры становятся неплавкими и поэтому не допускают повторной формовки, и термопластичные, размягчающиеся при высоких температурах и допускающие повторную формовку.  [14]

    Смолы являются основой пластмасс и определяют их главные свойства. Основа связывает между собой составные части пластмассы.  [15]

    Страницы:      1    2    3    4

    www.ngpedia.ru

    Виды пластмасс и их состав

    Строительные машины и оборудование, справочник

    Категория:

       Автомобильные эксплуатационные материалы

    Виды пластмасс и их состав

    Пластмассы, как п синтетические каучуки и волокна, относятся к высокомолекулярным синтетическим материалам (полимерам).

    Пластмассами называют такие материалы, которые содержат в качестве основного компонента (связующего) полимер. На определенной стадии их получения они обладают пластичностью, т. е. способностью под влиянием тепла и давления принимать требуемую форму.

    В наиболее полном виде пластмассы состоят пз полимера (связующего), наполнителя, пластификатора, красителя, смазки и стабилизатора.

    В отдельных случаях они состоят только из одного полимера, а в большинстве других — из полимера и некоторых перечисленных компонентов.

    Полимер является основой любой пластмассы, он связывает компоненты пластмассы в монолитное целое, придает ей главные свойства. Полимерами называют высокомолекулярные вещества, состоящие из огромных молекул (макромолекул), образовавшихся из многократно повторяющихся звеньев (цепей) мономера. Молекулярная масса полимеров составляет от нескольких тысяч до нескольких миллионов единиц.

    Если макромолекулы высокомолекулярных соединений состоят из нескольких видов повторяющихся звеньевг то их называют сополимерами.

    Полимер, у которого макромолекулы состоят из разнородных относительно крупных звеньев (осколков макромолекул), называется блок-сополимером.

    Значительный интерес представляют так называемые привитые сополимеры, к макромолекулам которых «прививаются» боковые отростки молекул другого вещества. Благодаря этому можно получать материалы с новыми, заранее заданными свойствами.

    Схемы строения указанных разновидностей полимеров показаны па рис. 1.

    В зависимости от химического состава полимеры делятся на органические, элементоорганические и неорганические ив зависимости от происхождения или способа получения — на природные, искусственные и синтетические.

    В настоящее время при производстве пластмасс наиболее часто используются синтетические полимеры (смолы) и значительно реже искусственные (эфиры, целлюлозы) и природные полимеры (каучук, асфальты и канифоль).

    Все синтетические полимеры получают реакцией полимеризации или поликонденсации. Исходные для этого низкомолекулярные вещества, называемые мономерами, обычно содержат в молекулах реакционно способные двойные или тройные связи или являются циклическими структурами, способными к разрыву своих химических связей.

    При создании определенных условий (температура, давление, катализатор) у них разрывается часть связей и происходит соединение в длинные цепочки полимера.

    При полимеризации определенное количество молекул мономера соединяется в одну молекулу полимера без выделения каких-либо побочных продуктов.

    В реакции может участвовать не один, а несколько мономеров. Такой процесс называется сополимеризацией.

    Рис. 1. Схемы строения полимеров: А и В — различные звенья макромолекул

    Полимеры, полученные поликонденсацией, имеют в основном пространственную структуру, где, помимо межмолекулярных сил сцепления между молекулами, действуют химические связи. Пространственная структура образуется под действием тепла, катализатора или же при добавке к полимеру специального вещества — отвердителя. От количества межмолекулярных связей у полимера зависит его способность растворяться и размягчаться при нагреве. При достижении их определенного количества полимер теряет способность растворяться и размягчаться (плавиться). Таким образом, физико-химические свойства полимерных материалов зависят не только от химической природы полимера, но и от характера сочетания молекул друг с другом в те или иные структуры.

    Высокая прочность полимеров объясняется резким возрастанием сил межмолекулярного притяжения, так как у них большие молекулы взаимодействуют между собой огромным числом звеньев п отделить друг от друга такие молекулы очень трудно.

    В зависимости от поведения при повышенных температурах все синтетические полимеры делятся на термореактивные и термопластичные. В связи с этим и пластмассы также делятся на термореактивные (неплавкие и нерастворимые) и термопластичные. В некоторые пластмассы входят одновременно термо-реактнвные и термопластичные смолы, термореактивные смолы и каучук.

    Термореактивные пластмассы (реактопласты) при повторном нагревании вследствие протекания необратимых химических реакций превращаются в твердые труднорастворимые и не-размягчающиеся (неплавкие) вещества. Поэтому формование деталей из термореактивных пластмасс должно опережать процесс образования самой пластмассы, так как в противном случае оно будет затруднено или невозможно. Термореактивные пластмассы получают поликонденсацией низкомолекулярных веществ при повышенной температуре.

    В отвержденном состоянии большинство термореактивных смол по сравнению с термопластичными меньше изменяет физические и механические свойства при нагреве, обладает малой хладо-текучестью, т. е. медленно деформируется в процессе эксплуатации под влиянием постоянно действующей нагрузки. В то же время у них, как правило, более низкая вязкость.

    Термопластичные пластмассы (термопласты) при повторном нагревании размягчаются и поддаются формованию, а при охлаждении снова застывают, сохраняя прежние свойства, поэтому их можно многократно перерабатывать. Термопластичные пластмассы получают полимеризацией ннзкомолекулярных органических веществ. Чаще всего для производства термопластичных пластмасс используются следующие термопластичные смолы: поли-метилметакрилат, полистирол, поливи-иилхлорид, полиэтилен, политетрафторэтилен, полиамиды, полиуретаны. Все они имеют линейную, а не пространственную структуру молекул.

    Большинство термопластичных смол обладает высокой ударной вязкостью, водостойкостью и хорошими диэлектрическими свойствами и в то же время низкой теплостойкостью и значительной хладотекучестыо. Многие из термопластичных пластмасс могут быть использованы при температуре не выше 60—80 °С. Для некоторых из этих пластмасс она может доходить до 150—160 и даже 250 °С (например, для фторопласта).

    Термопластичные пластмассы (особенно фторопласты) подвержены значительному изменению линейных размеров и объема с изменением температуры.

    Детали, изготовленные из термопластичных масс, поддаются сварке.

    Пластификаторы вводят в состав для понижения хрупкости, придания пластическим массам мягкости, текучести, пластичности, для повышения гибкости и растяжимости. Они повышают стойкость пластических масс к теплу и холоду.

    Пластификаторы с течением времени могут выделяться из материала и испаряться, вследствие чего увеличиваются жесткость и хрупкость деталей.

    Пластификаторы — это своеобразные растворители замедленного действия. Сравнительно небольшие молекулы пластификатора, проникая между-цепочками полимера, разобщают их, силы взаимодействия между атомами соседних цепочек ослабевают, и цепочки получают достаточно большую свободу перемещения. Это и приводит к приданию полимеру новых свойств. Так, например, он может быть превращён из твердого материала в мягкий и эластичный.

    В качестве пластификаторов применяют различные низкомолекулярные высококипящие малолетучие жидкости (сложные эфиры фталевой, фосфорной, себациновой и других кислот) и твердые низкомолекулярные каучукоподобные или воскоподобные смолы. Лучший пластификатор обладает меньшей летучестью.

    Наполнители служат для частичной замены связующих, снижения стоимости пластических масс и придания им определенных свойств. Так, наполнители могут повышать прочность, теплостойкость, диэлектрические свойства или электропроводность, теплопроводность, уменьшать хрупкость и усадку. Иногда наполнитель, Улучшая один показатель, ухудшает другие. Наполнители разделяются на органические (древесная мука, измельченная сульфитная и натронная целлюлоза, ткань, бумага и др.) и минеральные (као-лип, тальк, мел, металлические порошки, кварцевая мука, цемент, асбест, асбестовое волокно, слюда, стеклянные нити и ткани и др.).

    Рис. 2. Зависимость прочности пластмассы от температуры: 1 — термопласты; 2 — реактопласты

    По структуре органические п минеральные наполнители делятся на порошкообразные, волокнистые и листовые. В зависимости от этого и пластмассы подразделяются на порошкообразные (пресс-порошки и литьевые массы), волокнистые и слоистые. Некоторые пластмассы (органическое стекло, винипласт, целлулоид и др.) изготовляются без наполнителей.

    У пенопластов, кроме смол, вторым основным компонентом может быть газообразователь, т. е. добавка, разрушающаяся при размягчении смолы п образующая газообразные вещества (чаще всего азот).

    Красители вводятся для придания пластической массе определенной окраски. Они представляют собой минеральные пигменты в тонкоизмельченном виде или органические красители. Красители могут также увеличивать долговечность пластмасс, повышать химическую и термическую стойкость и другие качества.

    Смазки, или смазывающие вещества, вводятся в пластмассы для лучшей пластификации и предотвращения прилипания изделий к пресс-формам. Наиболее часто используют для этого парафин, стеарин.

    Стабилизаторы (ингибиторы) способствуют сохранению первоначальных свойств пластмасс.

    Отдельные виды пластмасс содержат отвердители (гексаметилендиамин, малеиновый ангидрид и др.), под действием которых жидкий состав превращается в твердую пластмассу катализаторы для ускорения процесса отверждения.

    Читать далее: Основные свойства пластмасс

    Категория: - Автомобильные эксплуатационные материалы

    Главная → Справочник → Статьи → Форум

    stroy-technics.ru

    Простая пластмасса - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Простая пластмасса

    Cтраница 1

    Простые пластмассы состоят в основном из одного вещества, например из чистых связующих смол, без наполнителя.  [1]

    Простые пластмассы состоят в основном из одного продукта, например из чистых связующих смол, без наполнителя. При этом к смолам иногда добавляют вещества, улучшающие физико-механические свойства композиции, или так называемые пластификаторы.  [2]

    Простые пластмассы состоят в основном из одного вещества, например из чистых связующих смол, без наполнителя.  [3]

    Простые пластмассы образованы только одной смолой без введения в нее других веществ. В качестве примера служит полиэтилен, который может быть непосредственно использован как материал для производства многих изделий.  [4]

    Простые пластмассы состоят в основном из одного вещества, например из чистых связующих смол; без наполнителя.  [5]

    Простые пластмассы могут состоять из чистых связующих смол, без наполнителя. Для улучшения физико-механических свойств простых пластмасс иногда к смолам добавляют пластификаторы. К простым пластмассам относятся акрилат ( органичное стекло) и полистироль.  [6]

    Простые пластмассы состоят только из одного высокомолекулярного соединения ( полиэтилен, полиизобутилен, полистирол.  [8]

    В отличие от простых пластмассы, содержащие также наполнители, пластификаторы или другие компоненты, называют сложными, или композиционными Примером сложных пластмасс являются прессовочные порошки ( пресспорошки), содержащие, кроме связующего вещества, также наполнители, красители, отвердители и другие компоненты. Содержание связующего в них колеблется в пределах 30 - 60 % от общего веса пластмассы.  [9]

    Некоторые пластические массы состоят только из полимера - простые пластмассы, другие представляют собой композицию, в которой помимо полимера присутствуют наполнители, пластификаторы, красители, отвердители, стабилизаторы-наполненные пластмассы. Основой всякой пластмассы являются высокомолекулярные полимерные вещества, связывающие воедино все компоненты композиции. Эти полимеры называются связующими.  [10]

    Некоторые пластические массы состоят только из полимера - простые пластмассы, другие представляют собой композицию, в которой, помимо полимера, присутствуют наполнители, пластификаторы, красители, отвердители, стабилизаторы - наполненные пластмассы. Основой всякой пластмассы являются высокомолекулярные полимерные вещества, связывающие воедино все компоненты композиции. Эти полимеры называются связующими.  [11]

    Пластмассы ( пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определенную устойчивую форму. Простые пластмассы состоят из одних химических полимеров.  [12]

    Пластмассы разделяют на простые и сложные. Простые пластмассы представляют собой чистые полимеры, например полиэтилен, органические стекла и др. Сложные пластмассы состоят из связующего вещества, наполнителя, отвердителя, ингибитора, пластификатора, красителя и смазывающих добавок.  [13]

    Пластмассы состоят из одного или нескольких веществ и в зависимости от этого делятся на простые и сложные. Простые пластмассы состоят из чистого полимера ( например, связующей искусственной смолы), и тогда понятия пластмасса и полимер становятся тождественными.  [14]

    Простые пластмассы могут состоять из чистых связующих смол, без наполнителя. Для улучшения физико-механических свойств простых пластмасс иногда к смолам добавляют пластификаторы. К простым пластмассам относятся акрилат ( органичное стекло) и полистироль.  [15]

    Страницы:      1    2

    www.ngpedia.ru

    Пластмассы это что такое Пластмассы: определение — История.НЭС

    Пластмассы

    Слово «пластичность» на греческом означает «податливый», «годный для лепки». Долгое время единственным материалом, пригодным для лепки, оставалась глина.

    Теперь, говоря о пластических массах, или пластмассах, имеют в виду материалы, созданные на основе полимеров – веществ, молекулы которых (макромолекулы) состоят из большого количества повторяющихся структурных единиц (звеньев) одного или нескольких типов.

    Все животные и растительные организмы построены из макромолекул, т. е. из полимеров. Без них не было бы жизни на земле. Еще первобытный человек широко использовал камень, дерево и кость для изготовления орудий труда и оружия. Дерево и кость – органические полимеры. Кроме того, природными полимерами являются волокна растений, из которых делали нити и веревки, соединявшие части орудий, смолы растительного и минерального происхождения.

    С появлением одежды стали применяться органические полимеры животного и растительного происхождения – шкуры, лен, шелк. Органические полимеры, и прежде всего древесина, сыграли огромную роль в строительстве, судостроении, транспорте и авиации.

    До середины XIX в. человечество вполне обходилось природными полимерными материалами, но затем положение изменилось. Это произошло по нескольким причинам: во?первых, стала ощущаться нехватка некоторых природных материалов, во?вторых, развитие техники выявило потребность в материалах с новыми свойствами, не существовавших в природе. Их нужно было получать. Несмотря на то, что некоторые вещества были открыты, прошло много времени до начала их промышленного производства.

    С давних времен химики во время опытов получали на дне и стенках колб смолу – густое, вязкое вещество, которое не всегда удавалось отделить от стекла. Сначала посуду просто выбрасывали, позже химики начали исследовать странные вещества.

    Подобные исследования иногда позволяли обнаружить неизвестный ранее полимер. Многие известные сейчас синтетические полимеры были открыты случайно. Их широкое применение началось лишь десятилетия спустя.

    Так, полистирол впервые был получен в 1839 г., его промышленное производство началось в 1920 г. Приоритет получения полимера из формальдегида принадлежит А. М. Бутлерову, сделавшему это в 1859 г. Промышленное же производство его началось 101 год спустя, в 1860 году.

    Одними из первых полимерных материалов, запущенных в промышленное производство, были целлулоид, резина и эбонит. Их получали на основе природных полимеров.

    Целлулоид получали из нитрата целлюлозы и камфоры. Его применение в качестве материала для биллиардных шаров спасло жизни тысячам слонов, бивни которых служили сырьем для изготовления главного атрибута этой благородной игры. В конце XIX – начале XX в. непременным атрибутом мужчин были целлулоидные воротнички и манжеты. Целлулоиду обязаны своим развитием фотография и кинематограф. Это были новые области техники, для которых традиционные материалы не подходили. Впоследствии целлулоид из?за своей легковоспламеняемости был вытеснен другими пластиками. Теперь он применяется лишь для изготовления шариков для настольного тенниса.

    Эбонит – резина, содержащая около 30 % серы. По свойствам он совсем не похож на резину.

    В конце XIX в. нужды электротехники вызвали к жизни фенольные пластики – различные фенопласты, резолы, карболиты. Это уже были настоящие синтетические полимеры, получаемые из фенола и формальдегида. Из них прессовали электрические патроны, выключатели, розетки, телефонные аппараты, детали радиоприемников и т. п. Настала эра синтетических полимеров.

    В конце XIX – начале XX в. на основе формальдегида и фенола стали изготавливаться бакелиты, названные по имени бельгийского ученого.

    В 30?е годы XX в. английский химический концерн «Ай?Си?Ай» развернул программу исследований химических реакций под высоким давлением (50–150 МПа). Одна из целей этой работы состояла в проверке предположения, согласно которому при повышенном давлении некоторые реакции конденсации (соединения) молекул должны протекать с высокой скоростью без катализатора. Случайно одной из первых изученных реакций было взаимодействие этилена с бензальдегидом. Ожидаемого продукта конденсации в лабораторном автоклаве обнаружено не было. Но иногда на стенках сосуда находили белый твердый налет рогоподобного вещества.

    Сначала ему не придавали значения, так как, согласно данным анализа, он не содержал фрагментов бензальдегида. Но позже его начали исследовать. Вскоре было установлено, что это полимер этилена, по свойствам схожей с гуттаперчей – одним из видов натурального каучука. Гуттаперча, благодаря высокому электрическому сопротивлению, водонепроницаемости и пластичности, в то время широко применялась для изоляции подводных электрических, телеграфных и телефонных кабелей.

    Фирма, которой был предложен новый материал, специализировалась на изготовлении оболочек кабелей из гуттаперчи. Она располагала необходимым оборудованием. Уже через год стало ясно, что перед полиэтиленом как новым электроизоляционным материалом открывается большое будущее. Теперь концерн «Ай?Си?Ай» выделил крупные средства на создание уникального производства полимера этилена под давлением 150 МПа, и началась «полиэтиленовая» жизнь.

    Коротко остановимся на других, наиболее распространенных видах пластмасс.

    Фторопласт сейчас более известен под названием тефлон. Он представляет собой полностью фторированный полиэтилен. Фтор придает полиэтилену высокую химическую стойкость. Фторопласт применяется для уплотнения трубопроводов, производства посуды.

    Нейлон – это волокнообразующий полимер из группы полиамидов, разработанный американской фирмой «Дюпон».

    Лавсан, получивший название от лаборатории высокомолекулярных соединений Академии наук СССР – волокнообразующий полиэфир – полиэтилентерефталат.

    Все пластмассы делятся на термопласты и реактопласты.

    Термопласты построены из длинных нитевидных макромолекул. Температура размягчения термопластов от 100 до 250 °C в зависимости от химического состава.

    Термопласты при нагревании ведут себя подобно металлам. Если такой полимер нагреть, он начнет размягчаться, станет эластичным, тянущимся, как резина. Он становится пластичным, его можно продавливать, придавать ему любую форму. При охлаждении вновь затвердеет.

    Основными видами термопластов являются полиэтилен, поливинилхлорид, полистирол, полиформальдегид, фторопласт, полиамиды, поликарбонаты.

    Нитевидные макромолекулы называют линейными макромолекулами. Если у макромолекулы есть боковые ответвления – это разветвленные макромолекулы.

    При определенных условиях отдельные макромолекулы могут соединяться. Полимер, образованный из таких молекул, называется сшитым, сетчатым или трехмерным. Такой полимер уже не расплавляется при нагревании, а может только размягчаться.

    Свойства полимеров такого типа меняются в зависимости от строения.

    Редкосшитые полимеры более устойчивы к воздействию высокой температуры, чем линейные. Густосшитый полимер твердый, жесткий и неплавкий. Такие неплавкие полимеры получили название термореактивных, или реактопластов.

    Однородные, водостойкие, устойчивые к разным видам нагрузок реактопласты получают, используя в качестве связующего вещества эпоксидные, полиэфирные, феноло?альдегидные или меламино?формальдегидные смолы, а в качестве наполнителя – синтетические волокна, ткани, бумагу из этих волокон. После окончания формования изделий из реактопласта полимерная фаза в них приобретает трехмерную структуру. Поэтому реактопласты имеют более высокие, чем термопласты, твердость, прочность, упругость. При этом их свойства не зависят от температуры.

    Деление синтетических полимеров на термопласты и реактопласты обусловлено особенностями формования изделий из этих полимеров. Термопласты можно расплавить при нагревании, а из жидкого расплава формовать банки, коробки, волокна, трубы, листы, пленки. Одним из наиболее распространенных способов производства изделий из термопластов является литье под давлением.

    При этом способе пластмасса нагревается в отдельной камере и после размягчения насосом под давлением подается в холодную пресс?форму. Пластмасса заполняет ее и, охлаждаясь, затвердевает.

    Реактопласты из?за сетчатой структуры приходится перерабатывать горячим прессованием. При горячем прессовании смесь полимера с добавками засыпают в горячую пресс?форму, состоящую из неподвижной подставки, по форме которой сходной с формой прессуемых изделий, и подвижного поршня?пуансона. После загрузки смеси пресс?форму закрывают и начинают давить на смесь пуансоном. Нагреваясь, смесь становится пластичной и под давлением заполняет пресс?форму. Затем при нагревании и под действием повышенного давления (а иногда на воздухе при обычных температурах) протекает реакция сшивания макромолекул, которую часто называют отверждением. Таким образом, реактопласт образуется непосредственно в форме. Этот процесс может занимать от нескольких минут до многих часов.

    Постепенно масса затвердевает, и изделие вынимают из прессформы.

    Таким способом можно изготавливать детали любой формы. Помимо полимера в состав пластмасс могут входить различные добавки: наполнители, пластификаторы, красители.

    Наполнители придают пластмассе прочность, термостойкость, высокое электрическое сопротивление. В качестве наполнителя используют волокна, ткани, опилки и другие материалы. Если в качестве наполнителя используют ткань, то такие пластмассы называют текстолитами. Ткань, выступая в роли каркаса, значительно повышает прочность пластмассы.

    Применение наполнителей снижает стоимость пластмасс, поскольку они дешевле самого полимера.

    Пластификаторы увеличивают пластичность материала и готовой пластмассы. Пластификатором обычно выступают молекулы низкомолекулярного органического вещества. Его молекулы внедряются между молекулами полимера, ослабляя связи между ними. Это позволяет формовать пластмассу при более низкой температуре.

    С помощью добавок можно придать пластмассам необходимые свойства. Так, вводя в состав пластмасс вещества, которые при нагревании разлагаются с образованием газов, получают газонаполненные пластмассы – пенопласты и поропласты.

    Газ внутри пенопластов образует замкнутые полости. В поропластах материал пронизан сообщающимися друг с другом сквозными порами. Газонаполненные пластмассы образуют целое семейство. Среди них есть жесткие, твердые, эластичные. Они прекрасные тепло– и звукоизоляторы. Удельный вес пено– и поропластов значительно ниже, чем у дерева и пробки.

    В стеклопластиках используется для упрочнения стекло в виде волокон, жгутов, матов, коротких волоконец. Связующим полимером могут быть эпоксидные и полиэфирные смолы, полиамиды, полипропилен и другие.

    Существуют пластмассы, в которых роль усиливающих элементов играют углеродные, борные волокна. Их называют углепластиками, боропластиками.

    Пенопласты, стеклопластики, а также слоистые пластмассы называют собирательным термином – композиционные материалы.

    В начале XX в. во всем мире производилось всего несколько тысяч тонн пластмасс – очень мало по сравнению с другими конструкционными материалами – металлами, деревом, цементом, стеклом.

    В XX в. производство полимеров превысило по объему производство стали и цветных металлов. Очень важно сравнивать эти показатели именно по объему, поскольку плотность синтетических полимеров значительно ниже, чем плотность металлов. Самый легкий металл – алюминий, его плотность 2,3 г/см3, железа – 7,8 г/см3. Плотность большинства полимеров колеблется от 0,9 г/см3 (плотность полипропилена) до 1,4 г/см3 (плотность поливинилхлорида). Следовательно, при равной массе объем полимеров примерно в 5–7 раз больше объема стали.

    С каждым годом прирост выпуска полимеров постоянно растет, а выпуск металлов фактически стабилизировался.

    По сравнению с металлами, у пластмасс есть несколько важных преимуществ:

    1) пластмассы намного легче железа. При создании новых самолетов, автомобилей, кораблей, машин и механизмов, бытовых приборов и других конструкций это крайне важно: возрастают грузоподъемность, производительность, мощность, экономится топливо;

    2) пластмассы не ржавеют, а из?за коррозии железа и стали почти треть ежегодно добываемого металла идет на замену проржавевшего;

    3) трущиеся детали из пластмасс работают гораздо бесшумнее металлических, требуют меньше смазочных материалов или не требуют их вовсе. Это, в конечном итоге, тоже экономит энергию;

    4) существует еще одна причина, пожалуй, наиболее важная: практически в любой отрасли промышленности, где для производства различных изделий применяют синтетические полимеры, они обеспечивают рост производительности труда, позволяют снизить энергетические и материальные затраты.

    Пластмассы успешно заменяют дерево, натуральные волокна, керамику. Изделия из них легче формовать, производство пластмасс дает меньше отходов, они более долговечны. Помимо того, из?за резкого возрастания населения Земли возникла нехватка натуральных материалов.

    Сырье для производства полимеров станет (или уже стало) дефицитным, поэтому нужно научиться его экономить. Ученые уже сейчас работают над этой проблемой в четырех направлениях.

    1. Упрочнение материала для уменьшения его расхода. Из более прочного материала можно сделать изделие с более тонкими стенками, более тонкую пленку или волокно. Одно из основных направлений повышения прочности – создание композитов. Не исчерпаны также резервы повышения качества полимеров за счет направленной кристаллизации, ориентации.

    В качестве примера можно взять полиэтилен.

    Полиэтиленовая пленка легко рвется, ее прочность при растяжении всего 20 МПа. Но специально ориентированные при вытяжке высококристаллические волокна и пленки из полиэтилена могут иметь прочность до 200 МПа.

    2. Стабилизация для увеличения срока службы. Полимерам не страшна ржавчина, но им свойственно старение. Под действием ультрафиолетовых лучей, кислорода воздуха, влаги они темнеют, растрескиваются, становятся хрупкими. Со старением полимеров борются, вводя в них различные стабилизаторы – добавки, замедляющие процессы старения. Полиэтиленовая пленка без стабилизаторов служит один сезон, стабилизованная – три сезона. Хотя стоимость стабилизаторов высока.

    3. Утилизация отходов. Отходы полиэтиленовой пленки собирают и пускают на вторичную переработку. Вторичный полиэтилен уступает по свойствам «свежему», но находит широкое применение. «Вторичный» капрон получают из чулок и носков.

    Изделия из реактопластов нельзя вновь расплавить. Сначала ученые искали способы их разложения химическими или биологическими методами. Но это энергетически не выгодно. Возможный путь – использование размолотых полимеров в виде наполнителей для композитов.

    4. Наполнить для того, чтобы разбавить. Во многих случаях в полимерные материалы можно вводить дешевые минеральные наполнители: мел, тальк, глиноземы, песок, цементную пыль, вулканическое стекло, отходы производства волокон и т. п. Многие из этих веществ уже используют для наполнения реактопластов. Когда полимер образует трехмерную сетку, он цепко удерживает частицы наполнителя. Материал при этом приобретает прочность, твердость, расход полимера снижается.

    Теперь на очереди наполнение термопластов. Здесь задача посложнее: линейные полимеры слабо взаимодействуют с неорганическими наполнителями, и материалы, содержащие 30–50 % наполнителя, получаются хрупкими. Для решения этой проблемы предложены добавки поверхностно?активных веществ, которые заметно улучшают взаимодействие между полимером и частицами наполнителя. Небольшие (около 1 %) добавки этих веществ позволяют получать наполненные термопласты с хорошими механическими свойствами.

    Перспективным является метод так называемой механохимической обработки. В этом случае частицы наполнителя подвергают размолу в быстродействующей аппаратуре (шаровые или струйные мельницы, дезинтеграторы) в присутствии полимеров или мономеров. При разламывании твердой частицы на ее поверхности образуются химически активные группы, способные взаимодействовать с полимером. Если наполнитель сначала подвергнуть размолу, а затем смешать с полимером, то прочностные показатели такой композиции будут на 25–40 % ниже показателей композиции, полученной механохимическим способом.

    Еще больше надежд ученые возлагают на способ полимеризационного наполнения. В этом случае с наполнителем смешивают мономер, жидкий или газообразный. Предварительно на поверхности наполнителя тем или иным химическим способом закрепляют молекулы катализатора. Затем создают такие условия, чтобы макромолекулы полимера вырастали непосредственно на поверхности частиц наполнителя. Получается композит, в котором неорганический наполнитель химически связан с органическим полимером. Прочностные показатели такой композиции будут на 25–40 % ниже показателей композиции, полученной механохимическим способом.

    В результате технической революции пластмассы практически во всех отраслях промышленности потеснили традиционные природные материалы.

    Оцените определение:

    Источник: 100 знаменитых изобретений

    interpretive.ru


    © 2005-2018, Национальный Экспертный Совет по Качеству.

Высокое качество системы сертификации Центрстройэкспертиза-Тест подтверждено ВОК



Ассоциация СРО Единство