Постутюжная технология производства печатных плат. Производство печатных плат технология
3.2 Технология производства печатных плат
Современные промышленные способы изготовления печатных плат основаны на использовании фольгированных диэлектриков, т.е. на получении токопроводного рисунка схемы методом травления. Разновидности способов сводятся к методу получения рисунка, например, фото способом или трафаретной печатью.
Существуют два основных промышленных способов изготовления печатных плат:
Спoсoб травления фольгированного диэлектрика без металлизации oтверстий. Примeняется, главным образом, для изготовления односторонних печатных плат;
Способ травления двустороннего фольгированного диэлектрика с электрохимической металлизацией отверстий. Применяется для изготовления двусторонних печатных плат.
Сеточно-химический метод имеет две разновидности: позитивный вариант и негативный вариант
Схемa технoлoгическoгo прoцесса изгoтoвлeния oднoстoрoнних печaтных плaт этими методами представлены на рисунке 3.1 и 3.2 соответственно.
При изготовлении двусторонних печатных плат, главным образом, используется метод фотопечати с последующим травлением, т.е. фотохимический метод. Отверстия же в плате металлизируются электрохимическим методом. Таким образом, при изготовлении двусторонних печатных плат используются два метода – фотохимический и электрохимический, поэтому этот метод получил название комбинированного метода.
В свою очередь комбинированный метод изготовления печатных плат имеет две разновидности:
Рисунок 3.1 - Схема технологического процесса изготовления односторонних печатных плат травлениемфольги (позитивный метод)
Рисунок 3.2 - Схема технологического процесса изготовления односторонних печатных плат травлением фольги (негативный метод)
3.3 Сеточно-химический способ изготовления печатных плат
Данный способ широко используется при массовом производстве печатных плат из одностороннего фольгированного диэлектрика. Как правило, изготовление плат осуществляется на универсальных механизированных линиях, состоящих из отдельных автоматов и полуавтоматов, последовательно выполняющих операции технологического процесса.
Весь процесс изготовления плат складывается из следующих основных технологических операций:
Раскрой материала и изготовление заготовок плат;
Нанесение рисунка схемы кислотостойкой краской;
Травление схемы;
Удаление защитного слоя краски;
Нанесение защитной эпоксидной маски;
Горячее лужение мест пайки;
Штамповка;
Маркировка.
С целью максимальной механизации и автоматизации процесса все печатные платы изготавливаются на одногабаритных технологических заготовках.
В этом случае на технологической заготовке компонуется два – три, а
иногда и более плат, т.е. используется метод групповой обработки. Этот метод позволят повысить производительность, исключить засорение атмосферы помещения стеклотекстолитовой пылью и сократить расход материала.
Из полос материала на прессе штампуются технологические заготовки плат. Заготовки имеют технологический припуск 2…6 мм по контуру. В заготовках одновременно вырубаются технологические базовые отверстия, которые в большинстве случаев в готовых печатных блоках служат крепёжными.
Заготовки плат поступают на автомат сеткографической печати, который кислотостойкой краской наносит рисунок схемы.
Сеткографический станок-автомат имеет два загрузочных бункера, в которые закладывается по триста заготовок плат. Заготовки по одной штуке забираются движущимся двусторонним вакуумным столом, который подаёт их в рабочую позицию нанесения рисунка, т.е. под сетку-трафарет. Как только заготовка встала в рабочую позицию, автоматически осуществляется движение ракеля, который продавливает краску сквозь сетку-трафарет. После этого стол поворачивается, забирая плату из-под сетки-трафарета, вакуум снимается, и плата с нанесённым рисунком по склизу спадает в сушило.
Такой же цикл выполняется на другой стороне стола. Платы поочерёдно забираются из левого и правого бункеров и соответственно сбрасываются после нанесения рисунка в левое и правое терморадиационное сушило. Автомат регулируется на различные размеры плат (заготовок).
Платы с нанесённым рисунком подвергаются травлению, которое выполняется на специальном полуавтоматическом агрегате. Агрегат травления конструктивно представляет собой поточную линию, через которую на жгутовом транспортёре проходят платы. В процессе движения производится их обработка. Травление осуществляется раствором хлорного железа.
На агрегате выполняются следующие операции:
вытравливание фольги в местах, не защищённых краской;
удаление остатков травящего раствора с плат методом обдува струёй воздуха;
промывкаплат водой двусторонним дождеванием;
сушка плат струёй горячего воздуха.
Для интенсификации процесса травления раствор хлорного железа, подаваемый насосом в распылительные форсунки, подогревается паром в специальных баках. Все основные узлы агрегата выполнены из титановых сплавов или неметаллических материалов, стойких в водном растворе хлорного железа.
Следующая операция – удаление кислотостойкой защитной краски.
Удалять краску можно различными органическими растворителями: ацетоном, уайт-спиритом, дихлорэтаном, трихлорэтиленом, четырёххлористым углеродом и др. Однако все процессы с перечисленными растворителями связаны с определённой вредностью для организма человека, пожаро- и взрывоопасностью. Поэтому при массовом механизированном или автоматизированном производстве нецелесообразно и небезопасно использовать органические растворители.
В промышленности разработан и применяется способ удаления краски гидропульпой, по принципу гидропескоструйной обработки. Специальный полуавтоматический агрегат производит удаление краски струёй водно-песчаной пульпы, поступающей из сопел специальной гидропушки. После удаления краски платы последовательно попадают в камеру промывки и сушки. Такой способ удаления краски полностью исключает все неприятности указанных химических способов. Кроме этого, одновременно с краской с печатных проводников удаляется окисная плёнка.
После удаления краски платы проходят операцию крацовки с целью удаления всех загрязнений и окислов с поверхности печатных проводников, а также придания плате товарного вида и подготовки её к нанесению эпоксидной маски. Операция крацовки выполняется на специальных полуавтоматических станках.
Следующая операция технологического процесса – нанесение термостойкой защитной эпоксидной маски. Эпоксидная маска обеспечивает защиту печатных проводников платы от облуживания и термоудара в процессе групповой пайки,защищает проводники от коррозии и улучшает электроизоляционные свойства печатной платы. Эпоксидная маска наносится методом сеткографии (трафаретной печати), также как наносится рисунок схемы. Обычно это делается на ручных станках. В массовом производстве может выполняться на сеткографическом автомате.
После нанесения эпоксидной маски и полимеризации платы поступают на автоматический агрегат горячего лужения. На этом агрегате платы проходят операции лужения, промывки и сушки. Печатные платы стопкой (рисунком вниз) загружаются в автоматический бункер, из которого специальным толкателем по одной подаются под валки привода. Передвигаясь в торец одна за другой по направляющим, платы проходят последовательно над двумя волнами припоя (сплав типа Розе). Сплав Розе защищает покрытия проводников печатной платы от окисления во время её хранения до момента последующей обработки.
Излишки припоя снимаются ракелем из термостойкой резины и возвращаются в ванну с припоем. Из жестких направляющих (по прохождении ракеля) платы попадают на жгутовый транспортёр, двигаясь по которому последовательно проходят операции промывки горячей водой и сушки горячим воздухом.
Следующей операцией обработки платы является операция вскрытия монтажных отверстий. Эта операция осуществляется методом штамповки на кривошипных прессах. Во избежание сколов и образования ореолов вокруг отверстий удельное давление прижимной платы штампа должно быть не менее 200 кг/см2. после вырубки отверстий на платы наносится маркировка методом сеткографии белой краской на эпоксидной основе.
studfiles.net
Постутюжная технология производства печатных плат / Хабр
Буквально в двух слова технологии
От ЛУТ она отличается способом переноса тонера на фольгу платы. А именно, предполагается заготовку из фольгированного материала положить на ровную поверхность, сверху, как обычно, принтерный отпечаток. Но поверх располагается гибкий нагревательный элемент, который необходимо плотно и равномерно прижать в приспособлении. После этого включается нагрев до достижения температуры плавления тонера.И о предложенной реализации
В качестве нагревательного элемента в статье предлагается использовать пищевую фольгу, а чтобы она разогрелась, через неё пропускается ток порядка 200 ампер при напряжении около 1 вольта. Мило, не правда ли?- Высокий ток подразумевает повышенные требования к проводам, контактам и шинам. Это удорожает конструкцию. Кроме того, жёсткие провода создают неудобства, ну и вообще...
- Трансформатор надо городить
- Фольга хлипкая. Впрочем, это больше вопрос эстетики
- Вся конструкция избыточно громоздкая
Очевидно, проблемы создаёт фольга, а точнее, низкое сопротивление нагревательного элемента на его основе. Ещё бы, ведь удельное сопротивление алюминия одно из самых малых — смотрим таблицу. А нам бы что-нибудь из конца списка, например нихром, на худой конец, константан. Фольга или лента из подобных материалов в природе есть, но купить с комфортом меньше, чем вагон, получится врядли.
Однако со временем родились два рабочих варианта:
- Углеткань. Как водится, она продаётся метрами. Когда мне удалось раздобыть кусочек разумных размеров, и я покрутил его в руках, идея слегка разонравилась. Нити легко расползаются, кроме того, они переплетены в разных направлениях, т. е. ток пойдёт не по всем. Но должно работать.
- Маска цветного кинескопа, или телевизора. Просто возникла мысль, что удельное сопротивление инвара, из которого её изготавливают, должно быть неплохим, но я так и не нашёл достоверные данные… Надо пробовать.
Получение принтерного отпечатка
Итак, делаем зеркальный отпечаток на лазерном принтере. Я использовал подложку от самоклеящихся этикеток. Её пришлось подшлифовать, иначе тонер осыпался. В итоге остались ворсинки. Большая часть ворсинок потом прилипла к плате (что не создало проблемы), но некоторые из них вместе с тонером остались на подложке, что уже неприятно. Вот он, человеческий фактор! Эти места я потом подкрасил перманентным маркером. В общем, у меня этот момент проработан не безупречно, но, похоже, глобально он решён. Просто, видимо, стоило заказать вот это, но, к сожалению, встретил слишком поздно. А может, следовало раздобыть Oracal 651.Моё приспособление
Вся конструкция собрана из подручных материалов, на фотографиях видно. Шины выступают на высоту платы, т.е. примерно на 1.5 мм. Плату окружает рамочка из картона, она не обязательна, но очень желательна, поскольку помогает сохранить нагревательный элемент ровненьким.На следующей фотографии видно, вырезанный из маски нагревательный элемент уложен поверх принтерного отпечатка. И он сделан такого размера, чтобы был контакт с алюминиевыми шинами.
Для равномерного распределения давления я применил пластину из пористого силикона толщиной 8 мм. Уложенная поверх нагревательного элемента, она его плотно прижимает одновременно к плате и алюминиевым шинам, обеспечивая с ними хороший электрический контакт. Это сделало приспособление очень простым и удобным. Я опасался, что пластина слишком мягкая и толстая, но оказалось — в самый раз. Вот как выглядит пористый силикон:
«3М» с обратной стороны — это своего рода подложка, потому что пластина самоклеющаяся мне досталась. Конечно, такую не найдёшь в соседнем магазине, но, возможно, подойдут несколько слоёв обычного силикона, вырезанного из формочки для запекания. Можно взять любую мягкую резину, но её придется теплоизолировать тем же силиконом.
Пористая резина прижимается сверху пластиной из металла. Если резина достаточно мягкая, думаю, можно прижимать и толстой фанерой. Этот бутерброд в моём случае сжимается струбциной. Для маленькой экспериментальной установки этого достаточно, а так можно сообразить что-нибудь быстрозажимное. При затягивании струбцины я значительных усилий не прилагал, получилось 2.5 оборота, но всё зависит от твёрдости используемой резины.
Теперь можно измерить сопротивление нагревательного элемента. Ориентировочно оно составило 0.05 Ом при зоне нагрева 80 х 80 мм. Кстати, сопротивление элемента из углеткани получилось примерно 0.35 Ом. Нагрев длился одну минуту, потребляемая мощность была примерно 350 Вт. Возможно, это не оптимальные режимы, и следует держать несколько минут при меньшей мощности, но пока я решил на этом остановиться. Вот готовый результат:
Что следует добавить
Поскольку маска сферическая, она может и не прижаться полностью к поверхности платы больших размеров. Но на последних моделях ныне вымерших кинескопов она достаточно плоская. Кстати, я её добыл из 15'' монитора. Использовать углеткань, или углеволокно тоже заманчиво, особенно, если суметь зафиксировать на подходящей основе. Вот так выглядит углеткань в моём эксперименте:А что в чёрном ящике?
Для нагрева требуется относительно большой ток и возможность его регулировки. Тут можно применить разные решения, и, возможно, у вас уже есть что-то готовое. У меня не нашлось ничего подходящего, поэтому пришлось придумывать самому. В результате, из подручных средств построена такая конструкция:От UPS оставлен только корпус и трансформатор, на первичную обмотку трансформатора поступает напряжение с регулятора мощности от пылесоса. В качестве регулятора можно использовать простейший диммер достаточной мощности, или можно спаять самодельный. Нагревательный элемент подключен напрямую к половине вторичной обмотки трансформатора.
Мощность нагрева (нас интересует удельная мощность, т.е. мощность на единицу площади обогрева) может меняться в широких пределах. Так, в оригинальной статье получается, она составляла 0.9 Вт/см2, а мой опыт проводился при 5.5 Вт/см2.
А что с травлением?
Для травления применил способ на основе перекиси водорода. Об этом уже писали на хабре. Но способ заслуживает дополнительного упоминания, хотя бы для пополнения статистики.Итак, размеры моей платы 65 x 68 мм. Травление проходило при следующих условиях. Я растворил в 50 мл 3% перекиси водорода 16 г лимонной кислоты (2 пакетика по 8 г) и ложечку (на глазок) соли. Платка проплавала 45 минут, периодически я её доставал, чтобы посмотреть, а заодно слегка перемешивал раствор.
Окончательный результат:
UPD: Немного подкорректировал описание, чтобы было понятнее.
habr.com
Методы изготовления печатных плат — Мегаобучалка
Введение
Печатная плата (ПП) представляет собой плоское изоляционное основание, на одной или обеих сторонах которого расположены токопроводящие полоски металла (проводники) в соответствии с электрической схемой.
Печатные платы служат для монтажа на них электрорадиоэлементов (ЭРЭ) с помощью полуавтоматических и автоматических установок с последующей одновременной пайкой всех ЭРЭ погружением в расплавленный припой или на волне жидкого припоя ПОС-60. Отверстия на плате, в которые вставляются выводы ЭРЭ при монтаже, называют монтажными. Металлизированные отверстия, служащие для соединения проводников, расположенных на обеих сторонах платы, называют переходными.
Конструирование ПП осуществляют ручным, полуавтоматизированным и автоматизированным методами.
Ручной метод конструирования обеспечивает оптимальное распределение проводящего рисунка, так как размещение изделий электронной техники (ИЭТ) на ПП и трассировку печатных проводников осуществляет непосредственно конструктор.
Конструирование начинают с разработки эскиза ПП, который выполняют в увеличенном масштабе (2:1; 4:1 и т. д.). Для всех элементов, входящих в схему (рисунок 1, а), изготовляют в том же масштабе шаблоны из картона и размещают их на поле чертежа. После выбора лучшего варианта их расположения наносят соединительные проводники (рисунок 1, б). Печатные проводники, расположенные на другой стороне платы, показывают штриховой линией.
Затем составляют чертеж ПП (рисунок 1, в). В узлах координатной сетки показывают окружности, соответствующие местам установки навесных элементов.
а) б) в) г)
а – принципиальная электрическая схема; б – эскиз ПП; в – чертеж ПП; г – ПП с навесными элементами
Рисунок 1 – Этапы конструирования ПП
Разработку конструкции ПП рекомендуется производить по следующим основным этапам:
· изучение технического задания (ТЗ) на изделие (печатный узел, электронный модуль), в состав которого входитконструируемая ПП;
· определение условий эксплуатации и группы жесткости;
· выбор типа и класса точности ПП;
· выбор размеров и конфигурации;
· выбор материала основания;
· выбор конструктивного покрытия;
· размещение элементов проводящего рисунка и трассировка печатных проводников;
· выбор метода маркировки и ее расположения;
· разработка конструкторской документации.
Методы изготовления печатных плат
Изготовление печатных плат (ГОСТ 20406—75) осуществляется химическим, электрохимическим или комбинированным способом. В последнее время получили распространение новые способы изготовления — аддитивные. Ниже дана краткая характеристика каждого из способов (таблица 1).
Таблица 1 – Краткая характеристика методов изготовления ПП
Способ изготовления ПП | Исходный материал | Наличие металлизированных отверстий | Вид плат | Минимальная ширина проводников, мм, до | Преимущества | Недостатки |
Химический | Фольгированный диэлектрик | нет | ОПП, ДПП | 0,2 | Минимальная трудоемкость; высокая прочность сцепления проводников с основанием | Необходимость в металлических втулках при двустороннем монтаже; непроизводительный расход меди |
Электрохимический | Нефольгированный диэлектрик | есть | ОПП, ДПП | 0,15 | Повышенная плотность монтажа | Большая неровность проводников по краям; низкая прочность сцепления проводников с основанием |
Комбинированный | Фольгированный с двух сторон диэлектрик | есть | ОПП, ДПП, МПП | 0,2 | Повышенная плотность монтажа | Значительная трудоемкость; разрыв технологического процесса из-за применения ручных операций; сверление через лаковую пленку |
Аддитивный | Нефольгированный диэлектрик | есть | ОПП, ДПП, МПП | 0,1 | Высокая плотность монтажа; снижение стоимости плат на 15-20%; сокращение производственных площадей; равномерность слоя осаждения меди; возможность полного исправления дефектных ПП после стравления меди и повторной металлизации |
Химический (субтрактивный) метод заключается в том, что на медную фольгу, приклеенную к диэлектрику с одной или двух сторон, наносят позитивный или негативный рисунок схемы проводников. Последующим травлением полностью удаляется медь и создается проводящий рисунок.
При электрохимическом (полуаддитивном) методе проводящий рисунок создается в результате электрохимического осаждения металла, а не вытравливания.
Комбинированный способ представляет собой сочетание первых двух способов. Проводящий рисунок получают вытравливанием меди, а металлизация отверстий осуществляется посредством химического меднения с последующим электрохимическим наращиванием слоя меди.
Аддитивный метод заключается в создании проводящего рисунка посредством металлизации достаточно толстым слоем химической меди (25-35 мкм), что позволяет исключить применение гальванических операций и операций травления (таблица 2).
Резка заготовок для плат из диэлектрических материалов производится с помощью роликовых или гильотинных ножниц.
Фиксирующие и технологические отверстия получают сверлением, а при крупносерийном производстве –штамповкой. Штамповочные операции при изготовлении ПП применяются при вырубке заготовок, штамповке отверстий различной формы и вырубке плат по контуру.
Получение металлического проводящего рисунка как в отверстиях, так и на поверхности диэлектрических материалов осуществляется обычно в две стадии химического меднения. Вначале диэлектрик металлизируется химическим (бестоковым) способом, а затем на полученный тонкий слой металла осаждается медь гальваническим способом до необходимой толщины металлического слоя.
В негативных процессах рисунок (защитный рельеф) защищает от вытравливания проводящие элементы ПП; в позитивном процессе рисунок необходим для защиты от электрохимического осаждения покрытий на пробельные места, т.е. на участки, с которых удаляется медь.
Гальваническим меднением получают слой меди в монтажных и переходных отверстиях, а также проводящий рисунок в полуаддитивной технологии.
Таблица 2 – Технологические процессы изготовления ПП различными методами
Номер операции | Химический способ | Электрохимический способ | Комбинированный способ | Аддитивный способ | ||
Негативный | Позитивный | Негативный | Позитивный | |||
Резка и рихтовка заготовок Зачистка поверхности Получение защитного рельефа на проводниках Травление меди Удаление защитного рельефа Сверление или штамповка отверстий Обработка контура Маркировка Нанесение защитной маски Консервация | Резка и рихтовка заготовок Зачистка поверхности Получение защитного рельефа на пробельных участках Нанесение гальванического покрытия на проводники Удаление защитного рельефа Травление меди Сверление или штамповка отверстий Обработка контура Маркировка Консервация | Резка и рихтовка заготовок Сверление отверстий подлежащих металлизации Подготовка поверхности Химическое меднение Усиление медигальваническиммеднением Нанесение защитного рельефа на пробельные места Гальваническое меднение Гальваническое покрытие сплавом олово-свинец Удаление защитного рельефа Травление меди с пробельных мест | Резка заготовок и хим.-мех. подготовка поверхности Получение защитного рисунка с негатива Травление меди Удаление защитного рисунка Нанесение защитной лаковой пленки Сверление и зенкование отверстий Химическое меднение Удаление лаковой пленки Гальваническоемеднение в два приема Покрытие сплавом Розе | Резка заготовок и хим.-мех. подготовка поверхности Получение защитного рисунка с позитива Нанесение защитной лаковой пленки Сверление и зенкование отверстий Химическое меднение Удаление лаковой пленки Гальваническое меднение Гальваническое покрытие сплавом олово-свинец Удаление защитного рисунка Травление | Резка заготовок Сверление отверстий Получение защитного рельефа Подготовка поверхности Химическое меднение предварительное Химическое меднение толстослойное |
megaobuchalka.ru
StudyPort.Ru - Технология изготовления печатных плат
Классификация методов конструирования печатных плат и узлов
Процесс изготовления печатной платы
Сравнительные характеристики методов производства и обоснование применяемого в данном проекте
Металлизация сквозных отверстий
Попарное прессование
Метод послойного наращивания
Составление блок схемы типового техпроцесса
Описание ТП
Выбор материала
Основные характеристики
Основы безопасности производства печатных плат
Библиография
Классификация методов конструирования печатных плат и узлов
При конструировании РЭА на печатных платах используют следующие методы.
Моносхемный применяют для несложной РЭА. В том случае вся электрическая схема располагается на одной ПП. Моносхемный метод имеет ограниченное применение, так как очень сложные ПП неудобны при настройке и ремонте РЭА. Схемно-узловой метод применяют при производстве массовой и серийной РЭА. При этом методе часть электрической схемы, имеющая четкие входные и выходные цепи (каскады УВЧ, УПЧ, блоки развёрток и т.п.) , располагается на отдельной плате. Ремонтопригодность таких изделий больше. Недостаток – сложность системы соединительных проводов, связывающих отдельные платы.
Функционально-узловой метод применяют в РЭА с использованием микроэлектронных элементов. При этом ПП содержит проводники коммутации функциональных модулей в единую схему. На одной плате можно собрать очень сложную схему. Недостаток этого метода – резкое увеличение сложности ПП. В ряде случаев все проводники не могут быть расположены на одной и даже обеих сторонах платы. При этом используют многослойные печатные платы МПП, объединяющие в единую конструкцию несколько слоёв печатных проводников, разделённых слоями диэлектрика. В соответствии с гостом различают три метода выполнения ПП:
- ручной;
- полу автоматизированный;
- автоматизированный;
Предпочтительными являются полу автоматизированный, автоматизированный методы.
Процесс изготовления печатной платы
В техническом прогрессе ЭВМ играют значительную роль: они значительно облегчают работу человека в различных областях промышленности, инженерных исследованиях, автоматическом управлении и т.д. Особенностями производства ЭВМ на современном этапе являются: Использование большого количества стандартных элементов. Выпуск этих элементов в больших количествах и высокого качества – одно из основных требований вычислительного машиностроения. Массовое производство стандартных блоков с использованием новых элементов, унификация элементов создают условия для автоматизации их производства. Высокая трудоёмкость сборочных и монтажных работ, что объясняется наличием большого числа соединений и сложности их выполнения вследствие малых размеров. Наиболее трудоёмким процессом в производстве ЭВМ занимает контроль операций и готового изделия. Основным направлением при разработке и создании печатных плат является широкое применение автоматизированных методов проектирования с использованием ЭВМ, что значительно облегчает процесс разработки и сокращает продолжительность всего технологического цикла.
Основными достоинствами печатных плат являются:
- Увеличение плотности монтажа и возможность микро-миниатюризации изделий.
- Гарантированная стабильность электрических характеристик.
- Повышенная стойкость к климатическим и механическим воздействиям.
- Унификация и стандартизация конструктивных изделий.
- Возможность комплексной автоматизации монтажно-сборочных работ.
Условия эксплуатации ЭВМ могут быть различными, они зависят в основном от климатических воздействий, которые необходимо учитывать при выборе материалов и конструктивных особенностей ЭВМ, кроме того, они определяют программу и объём контрольных испытаний. Для определения влияния окружающей среды на работу ЭВМ рассматривают следующие зоны климата: умеренную, тропическую, арктическую, морскую. Для ракетной и космической аппаратуры учитывают специфику больших высот.
Исходя из этого наиболее подходящим, является способ изготовления устройства на печатной плате (ТЭЗ 2го уровня. Так как печатная плата обладает большой поверхностью и будет быстрее охлаждаться, она имеет преимущество перед другими технологиями.
Типы производства: (Таблица 1.)
- Единичным называется такое производство, при котором изделие выпускается единичными экземплярами. Характеризуется: Малой номенклатурой изделий, малым объёмом партий, Универсальным оснащение цехов, Рабочими высокой квалификации.
- Серийное – характеризуется ограниченной номенклатурой изделий, изготавливаемых повторяющимися партиями сравнительно небольшим объёмом выпуска. В зависимости от количества изделий в партии различают: мелко средне и крупно серийные производства.
- Универсальное – использует специальное оборудование, которое располагается по технологическим группам, Техническая оснастка универсальная, Квалификация рабочих средняя.
Массовое производство характеризуется: узкой номенклатурой и большим объёмом изделий, изготавливаемых непрерывно; использованием специального высокопроизводительного оборудования, которое расставляется по поточному принципу. В этом случае транспортирующим устройством является конвейер. Квалификация рабочих низкая. Также различной может быть серийность: (Таблица 2.) В зависимости от габаритов, веса и размера годовой программы выпуска изделий определяется тип производства.
Тип производства и соответствующие ему формы организации работ определяют характер технологического процесса и его построение. Так как по условию технического задания объём производства равен 100 изделиям в год, то производство должно быть среднесерийным.
Сравнительные характеристики методов производства и обоснование применяемого в данном проекте
Достоинствами ПП являются:
- Увеличение плотности монтажа.
- Стабильность и повторяемость электрических характеристик.
- Повышенная стойкость к климатическим воздействиям.
- Возможность автоматизации производства.
Все ПП делятся на следующие классы: Опп – односторонняя печатная плата. Элементы располагаются с одной стороны платы. Характеризуется высокой точностью выполняемого рисунка.
ДПП – двухсторонняя печатная плата. Рисунок располагается с двух сторон, элементы с одной стороны. ДПП на металлическом основании используются в мощных устройствах.
МПП – многослойная печатная плата. Плата состоит из чередующихся изоляционных слоев с проводящим рисунком. Между слоями могут быть или отсутствовать межслойные соединения.
ГПП - гибкая печатная плата. Имеет гибкое основание, аналогична ДПП.
ППП - проводная печатная плата.
Сочетание ДПП с проводным монтажом из изолированных проводов.
Достоинства МПП:
- Уменьшение размеров, увеличение плотности монтажа.
- Сокращение трудоёмкости выполнения монтажных операций.
Металлизация сквозных отверстий
Данный метод основан на том, что слои между собой соединяются сквозными, металлизированными отверстиями.
Достоинства: Простой ТП.
Высокая плотность монтажа.
Большое количество слоёв.
Попарное прессование
Применяется для изготовления МПП с четным количеством слоёв.
Достоинства:
Высокая надёжность.
Простота ТП.
Допускается установка элементов как с штыревыми так и с планарными выводами.
Метод послойного наращивания
Основан на последовательном наращивании слоёв.
Достоинства: Высокая надёжность.
Мпп изготавливают методами построенными на типовых операциях используемых при изготовлении ОПП и ДПП. Исходя из соображений технологичности производства, я выбираю метод металлизации сквозных отверстий, так как он наиболее подходит к выбранной мною схеме среднесерийного производства. Так как на среднесерийном производстве используется автоматизация производства, для разработки чертежей платы я использовал программы автоматической трассировки P-CAD, которая создала 4 слоя платы размером 160ґ 180 мм. Из этого получается один двухсторонний слой и два односторонних слоя для внешних слоёв. Выходные файлы системы P-CAD позволяют значительно автоматизировать дальнейший технологический процесс в таких сложных операциях как сверление межслойных отверстий.
Составление блок схемы типового техпроцесса
Правильно разработанный ТП должен обеспечить выполнение всех требований, указанных в чертеже и ТУ на изделие, высокую производительность. Исходными данными для проектирования технологического процесса являются: чертежи детали, сборочные чертежи, специализация деталей, монтажные схемы, схемы сборки изделий, типовые ТП.
Блок схема типового техпроцесса.
Описание ТП
Метод металлизации сквозных отверстий применяют при изготовлении МПП. Заготовки из фольгированного диэлектрика отрезают с припуском 30 мм на сторону. После снятия заусенцев по периметру заготовок и в отверстиях, поверхность фольги защищают на крацевальном станке и обезжиривают химически соляной кислотой в ванне. Рисунок схемы внутренних слоёв выполняют при помощи сухого фоторезиста. При этом противоположная сторона платы должна не иметь механических повреждений и подтравливания фольги. Базовые отверстия получают высверливанием на универсальном станке с ЧПУ. Ориентируясь на метки совмещения, расположенные на технологическом поле. Полученные заготовки собирают в пакет. Перекладывая их складывающимися прокладками из стеклоткани, содержащими до 50% термореактивной эпоксидной смолы. Совмещение отдельных слоёв производится по базовым отверстиям. Прессование пакета осуществляется горячим способом. Приспособление с пакетами слоёв устанавливают на плиты пресса, подогретые до 120…130° С. Первый цикл прессования осуществляют при давлении 0,5 Мпа и выдержке15…20 минут. Затем температуру повышают до 150…160° С, а давление – до 4…6 Мпа. При этом давлении плата выдерживается из расчёта 10 минут на каждый миллиметр толщины платы. Охлаждение ведётся без снижения давления. Сверление отверстий производится на универсальных станках с ЧПУ СМ-600-Ф2. В процессе механической обработки платы загрязняются. Для устранения загрязнения отверстия подвергают гидроабразивному воздействию. При большом количестве отверстий целесообразно применять ультразвуковую очистку. После обезжиривания и очистки плату промывают в горячей и холодной воде. Затем выполняется химическую и гальваническую металлизации отверстий. После этого удаляют маску. Механическая обработка по контуру, получение конструктивных отверстий и Т. Д. осуществляют на универсальных, координатно-сверлильных станках (СМ-600-Ф2) совместимых с САПР. Выходной контроль осуществляется автоматизированным способом на специальном стенде, где происходит проверка работоспособности платы, т.е. её электрических параметров. Затем идет операция гальванического осаждения меди. Операция проводиться на авто операторной линии АГ-44. На тонкий слой осаждается медь до нужной толщины. После этого производится контроль на толщину меди и качество её нанесения. Далее производиться обработка по контуру ПП. Эта операция производиться на станке CМ-600-Ф2 с насадкой в виде дисковой фрезы по ГОСТ 20320-74. В этой операции удаляется ненужный стеклотекстолит по краям платы и подгонка до требуемого размера. Затем методом сеткографии производиться маркировка ПП. операция производиться на станке CДC-1, который требуемым штампом произведет оттиск на ПП маркировки. Весь цикл производства ПП заканчивается контролем платы. Здесь используется автоматизируемая проверка на специальных стендах.
Выбор материала
Для производства Многослойных печатных плат используются различные стеклотекстолиты по условию технического задания устройство должно работать в условиях с повышенной температурой для производства внутренних слоёв платы используется двухсторонний фольгированный стеклотекстолит с повышенной теплостойкостью СТФ-2. Для внешних слоёв печатной платы используется аналогичный односторонний фольгированный стеклотекстолит с повышенной теплостойкостью СТФ-1.
Основные характеристики
Фольгированный стеклотекстолит СТФ: Толщина фольги 18-35 мм.
Толщина материала 0.1-3 мм.
Диапазон рабочих температур –60 +150 с°.
Напряжение пробоя 30Кв/мм.
Фоторезист СПФ2: Тип негативный.
Разрешающая способность 100-500.
Проявитель метилхлороформ.
Раствор удаления хлористый метилен.
Основы безопасности производства печатных плат
Одним из наиболее распространенных методов создания электрических цепей в радиоэлектронной, электронно-вычислительной и электротехнической аппаратуре является применение печатного монтажа, реализуемого в виде односторонних, двусторонних и многослойных печатных платах.
Объем аппаратуры на печатных платах и их производство в отечественной промышленности и за рубежом неуклонно увеличивается. Именно поэтому знание опасных и вредных факторов производства, возникающих при изготовлении печатных плат, является одним из непременных условий подготовки специалистов электронной промышленности.
К заготовительным операциям относят раскрой заготовок, разрезку материала и выполнение базовых отверстий и изготовление слоев на печатных платах.
В крупносерийном производстве разрезку материала выполняют методом штамповки в специальных штампах на эксцентриковых прессах с одновременной пробивкой базовых отверстий на технологическом поле. В серийном и мелкосерийном производстве широкое распространение получили одно- и многоножевые роликовые ножницы, на которых материал разрезается сначала на полосы заданной ширины, а затем на заготовки. Разрезку основных и вспомогательных материалов (прокладочной стеклоткани, кабельной бумаги и др.) , необходимых при изготовлении многослойных печатных плат в мелкосерийном и единичном производстве, осуществляют с помощью гильотинных ножниц.
Таким образом, выполнение заготовительных операций по раскрою материала сопряжено с опасностью повреждения рук работающего в случае попадания их в зону между пуансоном и матрицей, в частности верхним и нижним ножом гильотинных ножниц, при ручной подаче материала.
Наибольшую опасность представляет работа пресса в автоматическом режиме, требующая большого напряжения, внимания и осторожности работающего, так как всякое замедление движения рабочего может привести к травматизму. Во избежание попадания рук рабочего в опасную зону применяют систему двурукого включения, при котором пресс включается только после одновременного нажатия обеими руками двух пусковых кнопок.
В прессах и ножницах с ножными педалями для предотвращения случайных включений педаль ограждают или делают запорной. Часто, кроме этого, опасную зону у пресса ограждают при помощи фотоэлементов, сигнал от которых автоматически останавливает пресс, если руки рабочего оказались в опасной зоне. При ручной подаче заготовок необходимо применять специальные приспособления: пинцеты, крючки и т.д.
Радикальным решением вопроса безопасности является механизация и автоматизация подачи и удаления заготовок из штампа, в том числе с использованием средств робототехники.
Базовые отверстия получают различными методами в зависимости от класса печатных плат. На печатных платах первого класса базовые отверстия получают методом штамповки с одновременной вырубкой заготовок. Базовые отверстия на заготовках плат второго и третьего классов получают сверлением в универсальных кондукторах с последующим развертыванием. В настоящее время в серийном и крупносерийном производстве традиционное сверление базовых отверстий по кондуктору на универсальных сверлильных станках уступило место сверлению на специализированных станках (например, модель AB-2 фирмы "Schmoll", ФРГ) . Таким образом, станки в одном цикле со сверлением предусматривают установку фиксирующих штифтов, плотно входящих в просверленное отверстие и скрепляющих пакет из 2-6 заготовок. Во избежание травм при работе на сверлильных станках необходимо следить за тем, чтобы все ремни, шестерни и валы, если они размещены в корпусе станка и доступны для прикосновения, имели жесткие неподвижные ограждения. Движущиеся части и механизмы оборудования, требующие частого доступа для осмотра, ограждаются съемными или открывающимися устройствами ограждения. В станках без электрической блокировки должны быть приняты меры, исключающие возможность случайного или ошибочного их включения во время осмотра.
Во избежание захвата одежды и волос рабочего его одежда должна быть заправлена так, чтобы не было свободных концов; обшлага рукавов следует застегнуть, волосы убрать под берет.
Образующуюся при сверлении, резке материала заготовок печатных плат пыль необходимо удалять с помощью промышленных пылесосов.
Библиография
- Справочник по конструированию РЭА (А. И. Горобец, А. И. Степаненко, В. М. Коронкевич)
studyport.ru
Методы изготовления многослойных печатных плат | pcbdesigner.ru
Методы изготовления многослойных печатных плат
Методы изготовления многослойных печатных плат (МПП) постоянно эволюционируют, при этом наблюдается развитие по спирали: возврат к старому в новом качестве. Так метод послойного наращивания, уступивший в свое время первенство методу металлизации сквозных отверстий, вернулся как способ наращивания слоев с глухими отверстиями. А метод попарного прессования можно увидеть как фрагмент изготовления МПП со скрытыми межслойными переходами. Поэтому описание прежних методов изготовления МПП, это не просто дань уважения истории техники, а возможность возврата к ним в новых комбинациях. Мало того, в ряде успешно функционирующих электронных систем эти методы до сих пор присутствуют, и никто не собирается их менять.
Что касается новых методов, то они неизбежно будут продвигаться вслед за интеграцией элементной базы, увеличением функциональности аппаратуры, уменьшением ее габаритов и массы.
Метод попарного прессования
Этот метод изготовления многослойных печатных плат основан на выполнении межслойных соединений посредством металлизации отверстий но типу обычных двусторонних печатных плат. Для изготовления многослойных печатных плат используются две заготовки из двустороннего фольгированного диэлектрика. На одной стороне каждой заготовки фотохимическим способом изготавливаются схемы внутренних слоев — второго и третьего. Затем сверлятся и металлизируются отверстия межслойных переходов, со второго на первый и с третьего на четвертый слой. При электрохимической металлизации переходных отверстий, для электрического соединения с катодом ванны используется целиковая фольга будущих наружных слоев. Заготовки с готовыми внутренними слоями платы спрессовываются. Выдавленная при прессовании смола заполняет переходные отверстия, защищая, тем самым, их медное гальванопокрытие от химического воздействия последующих технологических операций, в том числе от травления. После прессования заготовка МПП обрабатывается так же, как двусторонняя печатная плата, — позитивным комбинированным методом с получением металлизированных отверстий и печатных проводников на наружных слоях. Нужно отметить, что наружный слой МПП попарного прессования дважды подвергается металлизации: при осаждении меди в переходные отверстия и при металлизации сквозных отверстий, соединяющих наружные слои. Поэтому толщина меди наружных слоев, считая и медную фольгу, достигает 130—160 мкм. Это резко снижает разрешающую способность печатного рисунка наружных слоев, так как травление меди значительной и неравномерной толщины не обеспечивает необходимого качества и плотности печатного рисунка. Кроме того, при защите печатных узлов покровными лаками создаются значительные затруднения в получении плотного защитного покрытия: лак стекает с высоких проводников, обнажая их острые кромки.
Методом попарного прессования можно изготовить многослойную печатную плату с числом слоев не более четырех, что не всегда позволяет получить необходимую плотность монтажа.
Преимуществами метода попарного прессования является относительная простота реализации, поскольку он основан на обычной технологии металлизации отверстий двусторонних печатных плат, хорошо освоенной в промышленности. Однако прессование заготовок при недостаточной жесткости исходного материала может приводить к разрушению металлизации переходных отверстий, следовательно, к отказам соединений.
Метод открытых контактных площадок и выступающих выводов
Сущность обоих методов заключается в прессовании тонких печатных слоев с перфорированными окнами для доступа к внутренним слоям. Межслойные соединения, как таковые, в этих методах изготовления отсутствуют. Поэтому проводники, принадлежащие одной цепи, должны лежать в одном слое.
При изготовлении многослойных печатных плат методом открытых контактных площадок используются полученные травлением отдельные печатные слои. Соединения выводов навесных элементов с контактными площадками внутренних слоев осушествляются через перфорированные окна вышележащих слоев. В результате этого верхний слой имеет перфорации, обеспечивающие доступ ко всем нижним слоям. Очевидно, нижний внутренний слой имеет наибольшую плошать для трассировки печатных цепей, поскольку не имеет перфораций, а верхний наружный слой имеет наименьшую площадь для трассировки и наибольшее количество перфорации. Таким образом, при использовании метода открытых контактных площадок плотность печатного рисунка внутренних слоев имеет ограничения, связанные с необходимостью перфораций для осуществления соединений. Поэтому увеличение слойности МПП, изготавливаемых методом открытых контактных площадок, более пяти становится нецелесообразным. Такие ограничения отсутствуют для метода выступающих выводов.
Фольгирование перфорированной стеклоткани внутренних слоев при изготовлении многослойных печатных плат методом выступающих выводов производится самим изготовителем платы, так как выступающие выводы являются продолжением печатных проводников и выходят из внутренних слоев в перфорированные окна. После склеивания пакета внутренних слоев выступающие в окна выводы отгибают на наружную поверхность платы и формуют под крепящую колодку либо подпаивают к контактным площадкам наружного печатного слоя. Окна в плате предназначены для размещения микросхем. Из каждого окна должны выходить концы проводников в количестве, равном числу выводов микросхем.
Оба этих метода отличаются простотой и сравнительно коротким технологическим циклом. Однако необходимость формовки выводов радиоэлементов на различную глубину и пайка в перфорированные окна повышают трудоемкость монтажных операций для метода открытых контактных площадок. Кроме того, при этом методе существует ограничение на число слоев (не более 5…7), так как большее их число увеличивает глубину перфорации, что делает пайку открытых контактных площадок ненадежной.
В отличие от других методов, метод выступающих выводов не имеет каких-либо ограничений по максимальному количеству слоев. Но сосредоточение печатных проводников в узких переплетах перфорированных окон создает большие перекрестные помехи и, тем самым, ограничивает трассировочные возможности печатных узлов. Наряду с этим недостатком, следует принять во внимание затруднения в формовке и закреплении выступающих выводов на поверхности платы в пределах периметра окна.
Метод послойного наращивания
Изготовление многослойных печатных плат этим методом заключается в последовательном чередовании слоя изоляции и металлизированного слоя печатного рисунка. Соединения между проводящими элементами печатных слоев производятся гальваническим наращиванием меди в отверстиях слоя изоляции.
Изготовление платы начинается с приклейки к медной фольге изоляционной прокладки с перфорациями в местах будущих межслойных переходов. На всех операциях изготовления многослойной печатной платы методом послойного наращивания эта фольга осуществляет соединение металлизируемых поверхностей с катодом гальванической ванны. На конечном этапе на ней вытравливают рисунок наружного слоя.
После изготовления металлизированных переходов и их планаризации в плоскость с диэлектриком, на поверхность межслойной изоляции полуаддитивным методом формируют печатный рисунок слоя. На изготовленный слой проводящего рисунка напрессовывают следующий слой перфорированной изоляции и через перфорации наращивают очередные металлизированные переходы. Таким образом, последовательно создаются слои проводящего рисунка и изоляции с межслойными переходами.
В качестве межслойной изоляции могут быть использованы стеклотекстолитовые прокладки с перфорациями в местах межслойных переходов или полимерные пленки, отверстия в которых химически вытравливают в назначенных местах.
Количество слоев многослойной печатной платы при послойном наращивании ограничивают обычно пятью, так как изготовление каждого последующего слоя связано с многократными термическими (при прессовании) и химическими воздействиями на уже изготовленные слои.
Преимуществом данного метода изготовления многослойных печатных плат является исключительно высокая плотность монтажа, так как он дает возможность выполнения межслойных переходов в любой точке платы, независимо от трассировки и местоположения межслойных соединений смежных слоев. Таким образом, межслойные переходы могут выполняться независимо друг от друга, между любыми слоями в любой назначенной точке.
Ввиду необходимости строгой последовательности выполнения операций, процесс изготовления многослойных печатных плат методом послойного наращивания имеет длительный технологический цикл. Кроме того, этот процесс требует исключительной тщательности и качества изготовления, так как любой производственный дефект, допущенный на последних слоях, приводит к браку всей печатной платы. Использование этого метода для изготовления МПП создает дополнительные технологические трудности при очистке отверстий под межслойные переходы от затеков клея, последующего тщательного визуального контроля каждого отверстия на отсутствие загрязнений, шлифовывания вручную выступающих над поверхностью заготовки столбиков меди межслойных соединений до уровня поверхности изоляции и др. Попытки в какой-то мере механизировать эти операции, как правило, не приводят к положительному эффекту. Особенности гальванических осаждений в толстых слоях и длительный контакт электролитов с открытой поверхностью диэлектриков приводят к необходимости постоянной тщательной очистки электролитов и предотвращения попадания в ванну даже незначительных загрязнений, которые потом могут вызвать отказ соединений по межслойному переходу. Для обеспечения постоянных условий металлизации необходимо более часто, чем для других случаев, производить химический анализ, корректировку и очистку растворов ванн.
Трудности послойного наращивания в сочетании с высокой реализуемой плотностью монтажа и надежностью выделили этот метод для изготовления уникальных многослойных печатных плат в лабораторном производстве с высокой технологической культурой. Внедрение этого метода в серийное и даже в мелкосерийное производство затруднено.
Применение этого метода оправдано для создания аппаратуры с высокой надежностью. Например, печатные платы в аппаратуре космического транспорта и космического базирования, изготовленные этим методом, не имели ни одного отказа за все время использования с 80-х годов прошлого столетия.
Метод металлизации сквозных отверстий
Процесс изготовления многослойных печатных плат методом электрохимической металлизации сквозных отверстий состоит в изготовлении отдельных внутренних слоев химическим методом, прессования слоев в монолитный пакет, сверлении сквозных отверстий и их металлизации. При сверлении на стенках отверстий вскрывают торцы контактных площадок внутренних слоев. Соединения их друг с другом и с контактными площадками наружных слоев получаются за счет металлизации отверстий.
Поскольку все отверстия в плате являются сквозными, плотность межсоединений несколько ограничена, так как каждое отверстие используется для внутреннего соединения только один раз и в то же время занимает определенную площадь на каждом слое, ограничивая свободу трассировки печатных цепей. Вводя промежуточные внутренние соединения или сквозные отверстия для групп слоев, межслойные соединения можно располагать, друг над другом или только между теми слоями, где они нужны, не ограничивая трассировку печатных цепей на других слоях. Изготовление многослойных печатных плат по таким схемам обеспечивает наибольшую свободу в выборе месторасположения внутренних соединений и путей трассировки печатных проводников, следовательно, позволяет получить максимальную плотность межсоединений.
Метод металлизации сквозных отверстий, по сушеству единственный метод создания конструкций с наиболее оптимальной электрической структурой, обеспечивающей надежную передачу наносекундных импульсов и распределение питания между активными элементами. Такие конструкции многослойных печатных плат позволяют выполнить печатные цепи как полосковые линии передач и создают эффективное экранирование одной группы цепей от другой.
Таким образом, наряду с высокой технологичностью многослойные печатные платы, изготовленные методом металлизации сквозных отверстий, имеют высокую плотность монтажа, большое количество вариантов трассировки печатных цепей, более короткие линии связей, возможность электрического экранирования, улучшение характеристик, связанное с устойчивостью к воздействию окружающей среды за счет расположения всех печатных проводников в массе монолитного диэлектрика, возможность увеличения числа слоев без существенного увеличения стоимости и длительности процесса.
Недостатком метода металлизации сквозных отверстий является относительно механически слабая связь металлизации отверстий с торцами контактных площадок внутренних слоев. Изготовление МПП этим методом осложнено проблемой точного совмещения печатных слоев из-за погрешностей фотошаблонов и деформаций базовых материалов в процессе изготовления внутренних слоев и прессования. Особой тщательности требует подбор режимов прессования для обеспечения прочной адгезии пакета слоев, устойчивой к воздействию групповой пайки. Наконец, в процессе использования МПП возникают трудности, при внесении изменений в трассировку при ремонте плат.
Многослойные печатные платы со скрытыми микропереходами на наружных слоях
Схема изготовления МПП со скрытыми микропереходами похожа на схему МПП изготавливаемых методом попарного прессования. Отличие лишь в том, что металлизацию внешнего слоя защищают от осаждения, чтобы не создавать больших толщин меди на внешних слоях. Для этого отверстия в слое выполняют не сквозными, а глухими. Не трудно увидеть также, что высверлить глухое отверстие в тонком основании на заданную глубину, не порвав фольги, невозможно. Поэтому слой с микропереходами выполняют из фольгированного полиимида и отверстия вытравливают через перфорации фольги по местам, где должны быть отверстия.
Нужно сказать, что технология изготовления МПП со скрытыми микропереходами активно вытесняется методом послойного наращивания переходов на основание, изготовленное методом металлизации сквозных отверстий.
Гибкие печатные платы
Использование гибких диэлектрических материалов для изготовления печатных плат дает как разработчику, так и пользователю электронных устройств ряд уникальных возможностей. Это, прежде всего, уменьшение размеров и веса конструкции, повышение эффективности сборки, повышение электрических характеристик, теплоотдачи и, в целом, надежности.
Если учесть основное свойство таких плат — динамическую гибкость — становится понятным все возрастающий объем применения таких плат в автомобилях, бытовой технике, медицине, в оборонной и аэрокосмической технике, компьютерах, в системах промышленного контроля и бортовых системах.
Гибкие печатные платы (ГПП) изготавливаются на полиимидной или лавсановой пленке и поэтому могут легко деформироваться, даже после формирования проводящего рисунка. Большая часть конструкций гибких печатных плат аналогична конструкциям печатных плат на жесткой основе.
pcbdesigner.ru
Технология изготовления печатных плат
Технология изготовления печатных плат
Министерство Науки и Образования Республики Молдова
Колледж Микроэлектроники и Вычислительной Техники
Кафедра вычислительной техники
Реферат
Технология
Тема работы: Технология изготовления печатных плат.
Работу выполнил студент: Мурзин Юрий.
г. Кишинёв 2000.
1. Классификация методов конструирования печатных плат и узлов.. 3
2. Процесс изготовления печатной платы............................................. 4
3. Сравнительные характеристики методов производства и обоснование применяемого в данном проекте....................................................................................... 5
4. Металлизация сквозных отверстий................................................... 6
5. Попарное прессование....................................................................... 6
6. Метод послойного наращивания....................................................... 6
7. Составление блок схемы типового техпроцесса............................... 7
8. Описание ТП...................................................................................... 8
9. Выбор материала.............................................................................. 10
10. Основные характеристики:............................................................ 10
11. Основы безопасности производства печатных плат.................... 11
12. Библиография................................................................................ 13
При конструировании РЭА на печатных платах используют следующие методы. Моносхемный применяют для несложной РЭА. В том случае вся электрическая схема располагается на одной ПП. Моносхемный метод имеет ограниченное применение, так как очень сложные ПП неудобны при настройке и ремонте РЭА. Схемно-узловой метод применяют при производстве массовой и серийной РЭА. При этом методе часть электрической схемы, имеющая четкие входные и выходные цепи (каскады УВЧ, УПЧ, блоки развёрток и т.п.), располагается на отдельной плате. Ремонтопригодность таких изделий больше. Недостаток – сложность системы соединительных проводов, связывающих отдельные платы. Функционально-узловой метод применяют в РЭА с использованием микроэлектронных элементов. При этом ПП содержит проводники коммутации функциональных модулей в единую схему. На одной плате можно собрать очень сложную схему. Недостаток этого метода – резкое увеличение сложности ПП. В ряде случаев все проводники не могут быть расположены на одной и даже обеих сторонах платы. При этом используют многослойные печатные платы МПП, объединяющие в единую конструкцию несколько слоёв печатных проводников, разделённых слоями диэлектрика. В соответствии с гостом различают три метода выполнения ПП:
- ручной;
- полу автоматизированный;
- автоматизированный;
Предпочтительными являются полу автоматизированный, автоматизированный методы.
В техническом прогрессе ЭВМ играют значительную роль: они значительно облегчают работу человека в различных областях промышленности, инженерных исследованиях, автоматическом управлении и т.д. Особенностями производства ЭВМ на современном этапе являются: Использование большого количества стандартных элементов. Выпуск этих элементов в больших количествах и высокого качества – одно из основных требований вычислительного машиностроения. Массовое производство стандартных блоков с использованием новых элементов, унификация элементов создают условия для автоматизации их производства. Высокая трудоёмкость сборочных и монтажных работ, что объясняется наличием большого числа соединений и сложности их выполнения вследствие малых размеров. Наиболее трудоёмким процессом в производстве ЭВМ занимает контроль операций и готового изделия. Основным направлением при разработке и создании печатных плат является широкое применение автоматизированных методов проектирования с использованием ЭВМ, что значительно облегчает процесс разработки и сокращает продолжительность всего технологического цикла.
Основными достоинствами печатных плат являются:
- Увеличение плотности монтажа и возможность микро-миниатюризации изделий.
- Гарантированная стабильность электрических характеристик.
- Повышенная стойкость к климатическим и механическим воздействиям.
- Унификация и стандартизация конструктивных изделий.
- Возможность комплексной автоматизации монтажно-сборочных работ.
Условия эксплуатации ЭВМ могут быть различными, они зависят в основном от климатических воздействий, которые необходимо учитывать при выборе материалов и конструктивных особенностей ЭВМ, кроме того, они определяют программу и объём контрольных испытаний. Для определения влияния окружающей среды на работу ЭВМ рассматривают следующие зоны климата: умеренную, тропическую, арктическую, морскую. Для ракетной и космической аппаратуры учитывают специфику больших высот.
Исходя из этого наиболее подходящим, является способ изготовления устройства на печатной плате (ТЭЗ 2го уровня. Так как печатная плата обладает большой поверхностью и будет быстрее охлаждаться, она имеет преимущество перед другими технологиями.
Типы производства: (Таблица 1.)
- Единичным называется такое производство, при котором изделие выпускается единичными экземплярами. Характеризуется: Малой номенклатурой изделий, малым объёмом партий, Универсальным оснащение цехов, Рабочими высокой квалификации.
- Серийное – характеризуется ограниченной номенклатурой изделий, изготавливаемых повторяющимися партиями сравнительно небольшим объёмом выпуска. В зависимости от количества изделий в партии различают: мелко средне и крупно серийные производства.
- Универсальное – использует специальное оборудование, которое располагается по технологическим группам, Техническая оснастка универсальная, Квалификация рабочих средняя.
Массовое производство характеризуется: узкой номенклатурой и большим объёмом изделий, изготавливаемых непрерывно; использованием специального высокопроизводительного оборудования, которое расставляется по поточному принципу. В этом случае транспортирующим устройством является конвейер. Квалификация рабочих низкая. Также различной может быть серийность: (Таблица 2.)
В зависимости от габаритов, веса и размера годовой программы выпуска изделий определяется тип производства.
Тип производства и соответствующие ему формы организации работ определяют характер технологического процесса и его построение. Так как по условию технического задания объём производства равен 100 изделиям в год, то производство должно быть среднесерийным.
Достоинствами ПП являются:
- Увеличение плотности монтажа.
- Стабильность и повторяемость электрических характеристик.
- Повышенная стойкость к климатическим воздействиям.
- Возможность автоматизации производства.
Все ПП делятся на следующие классы:
a) Опп – односторонняя печатная плата.
Элементы располагаются с одной стороны платы. Характеризуется высокой точностью выполняемого рисунка.
b) ДПП – двухсторонняя печатная плата.
Рисунок располагается с двух сторон, элементы с одной стороны. ДПП на металлическом основании используются в мощных устройствах.
c) МПП – многослойная печатная плата.
Плата состоит из чередующихся изоляционных слоев с проводящим рисунком. Между слоями могут быть или отсутствовать межслойные соединения.
d) ГПП - гибкая печатная плата.
Имеет гибкое основание, аналогична ДПП.
e) ППП - проводная печатная плата.
Сочетание ДПП с проводным монтажом из изолированных проводов.
Достоинства МПП:
- Уменьшение размеров, увеличение плотности монтажа.
- Сокращение трудоёмкости выполнения монтажных операций.
Данный метод основан на том, что слои между собой соединяются сквозными, металлизированными отверстиями.
Достоинства:
Простой ТП.
Высокая плотность монтажа.
Большое количество слоёв.
Применяется для изготовления МПП с четным количеством слоёв.
Достоинства:
Высокая надёжность.
Простота ТП.
Допускается установка элементов как с штыревыми так и с
планарными выводами.
Основан на последовательном наращивании слоёв.
Достоинства:
Высокая надёжность.
Мпп изготавливают методами построенными на типовых операциях используемых при изготовлении ОПП и ДПП. Исходя из соображений технологичности производства, я выбираю метод металлизации сквозных отверстий, так как он наиболее подходит к выбранной мною схеме среднесерийного производства. Так как на среднесерийном производстве используется автоматизация производства, для разработки чертежей платы я использовал программы автоматической трассировки P-CAD, которая создала 4 слоя платы размером 160´180 мм. Из этого получается один двухсторонний слой и два односторонних слоя для внешних слоёв. Выходные файлы системы P-CAD позволяют значительно автоматизировать дальнейший технологический процесс в таких сложных операциях как сверление межслойных отверстий.
Правильно разработанный ТП должен обеспечить выполнение всех требований, указанных в чертеже и ТУ на изделие, высокую производительность. Исходными данными для проектирования технологического процесса являются: чертежи детали, сборочные чертежи, специализация деталей, монтажные схемы, схемы сборки изделий, типовые ТП.
Блок схема типового техпроцесса.
Метод металлизации сквозных отверстий применяют при изготовлении МПП. Заготовки из фольгированного диэлектрика отрезают с припуском 30 мм на сторону. После снятия заусенцев по периметру заготовок и в отверстиях, поверхность фольги защищают на крацевальном станке и обезжиривают химически соляной кислотой в ванне. Рисунок схемы внутренних слоёв выполняют при помощи сухого фоторезиста. При этом противоположная сторона платы должна не иметь механических повреждений и подтравливания фольги. Базовые отверстия получают высверливанием на универсальном станке с ЧПУ. Ориентируясь на метки совмещения, расположенные на технологическом поле. Полученные заготовки собирают в пакет. Перекладывая их складывающимися прокладками из стеклоткани, содержащими до 50% термореактивной эпоксидной смолы. Совмещение отдельных слоёв производится по базовым отверстиям. Прессование пакета осуществляется горячим способом. Приспособление с пакетами слоёв устанавливают на плиты пресса, подогретые до 120…130°С. Первый цикл прессования осуществляют при давлении 0,5 Мпа и выдержке15…20 минут. Затем температуру повышают до 150…160°С, а давление – до 4…6 Мпа. При этом давлении плата выдерживается из расчёта 10 минут на каждый миллиметр толщины платы. Охлаждение ведётся без снижения давления. Сверление отверстий производится на универсальных станках с ЧПУ СМ-600-Ф2. В процессе механической обработки платы загрязняются. Для устранения загрязнения отверстия подвергают гидроабразивному воздействию. При большом количестве отверстий целесообразно применять ультразвуковую очистку. После обезжиривания и очистки плату промывают в горячей и холодной воде. Затем выполняется химическую и гальваническую металлизации отверстий. После этого удаляют маску. Механическая обработка по контуру, получение конструктивных отверстий и Т.Д. осуществляют на универсальных, координатно-сверлильных станках (СМ-600-Ф2) совместимых с САПР. Выходной контроль осуществляется автоматизированным способом на специальном стенде, где происходит проверка работоспособности платы, т.е. её электрических параметров. Затем идет операция гальванического осаждения меди. Операция проводиться на авто операторной линии АГ-44. На тонкий слой осаждается медь до нужной толщины. После этого производится контроль на толщину меди и качество её нанесения. Далее производиться обработка по контуру ПП. Эта операция производиться на станке CМ-600-Ф2 с насадкой в виде дисковой фрезы по ГОСТ 20320-74. В этой операции удаляется ненужный стеклотекстолит по краям платы и подгонка до требуемого размера. Затем методом сеткографии производиться маркировка ПП. операция производиться на станке CДC-1, который требуемым штампом произведет оттиск на ПП маркировки. Весь цикл производства ПП заканчивается контролем платы. Здесь используется автоматизируемая проверка на специальных стендах.
Для производства Многослойных печатных плат используются различные стеклотекстолиты по условию технического задания устройство должно работать в условиях с повышенной температурой для производства внутренних слоёв платы используется двухсторонний фольгированный стеклотекстолит с повышенной теплостойкостью СТФ-2. Для внешних слоёв печатной платы используется аналогичный односторонний фольгированный стеклотекстолит с повышенной теплостойкостью СТФ-1.
Фольгированный стеклотекстолит СТФ:
Толщина фольги 18-35 мм.
Толщина материала 0.1-3 мм.
Диапазон рабочих температур –60 +150 с°.
Напряжение пробоя 30Кв/мм.
Фоторезист СПФ2:
Тип негативный.
Разрешающая способность 100-500.
Проявитель метилхлороформ.
Раствор удаления хлористый метилен.
Одним из наиболее распространенных методов создания электрических цепей в радиоэлектронной, электронно-вычислительной и электротехнической аппаратуре является применение печатного монтажа, реализуемого в виде односторонних, двусторонних и многослойных печатных платах.
Объем аппаратуры на печатных платах и их производство в отечественной промышленности и за рубежом неуклонно увеличивается. Именно поэтому знание опасных и вредных факторов производства, возникающих при изготовлении печатных плат, является одним из непременных условий подготовки специалистов электронной промышленности.
К заготовительным операциям относят раскрой заготовок, разрезку материала и выполнение базовых отверстий и изготовление слоев на печатных платах.
В крупносерийном производстве разрезку материала выполняют методом штамповки в специальных штампах на эксцентриковых прессах с одновременной пробивкой базовых отверстий на технологическом поле. В серийном и мелкосерийном производстве широкое распространение получили одно- и многоножевые роликовые ножницы, на которых материал разрезается сначала на полосы заданной ширины, а затем на заготовки. Разрезку основных и вспомогательных материалов (прокладочной стеклоткани, кабельной бумаги и др.), необходимых при изготовлении многослойных печатных плат в мелкосерийном и единичном производстве, осуществляют с помощью гильотинных ножниц.
Таким образом, выполнение заготовительных операций по раскрою материала сопряжено с опасностью повреждения рук работающего в случае попадания их в зону между пуансоном и матрицей, в частности верхним и нижним ножом гильотинных ножниц, при ручной подаче материала.
Наибольшую опасность представляет работа пресса в автоматическом режиме, требующая большого напряжения, внимания и осторожности работающего, так как всякое замедление движения рабочего может привести к травматизму. Во избежание попадания рук рабочего в опасную зону применяют систему двурукого включения, при котором пресс включается только после одновременного нажатия обеими руками двух пусковых кнопок.
В прессах и ножницах с ножными педалями для предотвращения случайных включений педаль ограждают или делают запорной. Часто, кроме этого, опасную зону у пресса ограждают при помощи фотоэлементов, сигнал от которых автоматически останавливает пресс, если руки рабочего оказались в опасной зоне. При ручной подаче заготовок необходимо применять специальные приспособления: пинцеты, крючки и т.д.
Радикальным решением вопроса безопасности является механизация и автоматизация подачи и удаления заготовок из штампа, в том числе с использованием средств робототехники.
Базовые отверстия получают различными методами в зависимости от класса печатных плат. На печатных платах первого класса базовые отверстия получают методом штамповки с одновременной вырубкой заготовок. Базовые отверстия на заготовках плат второго и третьего классов получают сверлением в универсальных кондукторах с последующим развертыванием. В настоящее время в серийном и крупносерийном производстве традиционное сверление базовых отверстий по кондуктору на универсальных сверлильных станках уступило место сверлению на специализированных станках (например, модель AB-2 фирмы "Schmoll", ФРГ).Таким образом, станки в одном цикле со сверлением предусматривают установку фиксирующих штифтов, плотно входящих в просверленное отверстие и скрепляющих пакет из 2-6 заготовок. Во избежание травм при работе на сверлильных станках необходимо следить за тем, чтобы все ремни, шестерни и валы, если они размещены в корпусе станка и доступны для прикосновения, имели жесткие неподвижные ограждения. Движущиеся части и механизмы оборудования, требующие частого доступа для осмотра, ограждаются съемными или открывающимися устройствами ограждения. В станках без электрической блокировки должны быть приняты меры, исключающие возможность случайного или ошибочного их включения во время осмотра.
Во избежание захвата одежды и волос рабочего его одежда должна быть заправлена так, чтобы не было свободных концов; обшлага рукавов следует застегнуть, волосы убрать под берет.
Образующуюся при сверлении, резке материала заготовок печатных плат пыль необходимо удалять с помощью промышленных пылесосов.
Ø Справочник по конструированию РЭА (А.И. Горобец, А.И. Степаненко, В.М. Коронкевич)
diplomba.ru
Методы изготовления печатных плат - Производство радиоаппаратуры
Категория:
Производство радиоаппаратуры
Методы изготовления печатных платСуществуют разнообразные методы изготовления печатных плат, отличающиеся друг от друга сочетанием определенного способа нанесения проводников с тем или иным способом создания проводящего покрытия.
Получившие наибольшее применение в промышленности методы изготовления печатных плат могут быть объединены по технологическим признакам в три основные группы.
I группа — получение печатных проводников путем осаждения электролитической меди на изоляционное основание.
Для этого используют следующие методы: фотоэлектрохимический; офсетноэлектрохимический; сеточноэлектрохимический;
II группа — получение печатных проводников путем травления фольгированного изоляционного материала. Для этого используют следующие методы: фотохимический; офсетнохимический; сеточнохимический;
III группа — получение печатных проводников путем переноса их со стальной матрицы на изоляционное основание. Для зтого используют следующие методы: фотоперенос; офсетоперенос; сеточный перенос.
Фотоэлектрохимический метод заключается в копировании изображения проводников с диапозитива на изоляционную плату, покрытую светочувствительным слоем, с последующим химическим и затем электрохимическим осаждением металла.
К достоинствам этого метода относятся большая точность (±0,15 мм) и разрешающая способность (0,5 мм) получаемого изображения; возможность одновременной металлизации отверстий, пробитых в плате; простота технологического оборудования и быстрота налаживания производства; экономия металла, который расходуется только на печатные проводники. Однако технологический процесс изготовления печатных плат этим методом занимает значительное время. Недостатком его является и то, что изоляционное оснооание подвергается воздействию химических реагентов.
Фотоэлектрохимический метод применим в опытном и серийном производстве при большой номенклатуре сложных двусторонних печатных плат.
Офсетноэлектрохимический метод состоит в том, что негативное изображение схемы печатают офсетным способом кислотощелочестойкой краской на изоляционное основание. Участки платы, не защищенные краской, металлизируют химическим, а затем электрохимическим способом. Точность получаемого изображения составляет ±0,2 мм, разрешающая способность — около 1 мм.
Этот метод позволяет быстро воспроизвести изображение. Металлизацию переходных отверстий осуществляют одновременно с получением проводников. Металл расходуется экономно. К недостаткам метода следует отнести: длительность процесса изготовления печатных форм; сложность изменения рисунка схемы; трудность подбора краски; необходимость применения технологических проводников при металлизации; воздействие на изоляционную плату химических реагентов.
Офсетноэлектрохимический метод пригоден для серийного производства двусторонних печатных плат при стабильности схем.
Сеточноэлектрохимический метод, применяемый для изготовления двусторонних печатных плат в крупносерийном производстве, состоит из последовательных операций:— химической металлизации изоляционных оснований с отверстиями;— нанесения через сетчатый трафарет кислотостойкой краской негативного изображения проводников;— электрохимического осаждения металла на не защищенные краской участки;- -удаления краски и снятия травлением химически осажденного металла.
Достоинствами этого метода являются быстрота воспроизведения изображения и одновременная металлизация переходных отверстий. К недостаткам относятся небольшая точность (±0,3 мм) и разрешающая способность (1,5 мм) получаемого изображения, трудность изменения рисунка схемы, воздействие на изоляционную плату химических реагентов и повышенный расход металла.
Фотохимический метод обеспечивает наивысшую точность (±0,05 мм) и разрешающую способность (0,2 мм) изображения схемы, которую копируют на фольгированный диэлектрик, покрытый светочувствительным слоем. После проявления изображения светочувствительный слой дубят, а незащищенные участки фольги удаляют химическим травлением.
К достоинствам этого метода относятся простота технологического оборудования, быстрота налаживания производства и легкий переход от одной схемы к другой. К недостаткам относятся невозможность металлизации в отверстиях, длительность процесса, непроизводительный расход металла, снимаемого травлением, воздействие на изоляционное основание химических реагентов.
Фотохимический метод наиболее распространен в опытном и серийном производстве при большой номенклатуре сложных односторонних печатных плат.
Офсет нох ими чески й метод состоит в том, что с позитивной печатной формы изображение печатают кислотощелоче-стойкой краской офсетным способом на фольгированный диэлектрик. Металл с незащищенных участков удаляют химическим травлением. Точность получаемого изображения ±0,2 мм, разрешающая способность около 0,5 мм.
Высокая производительность этого метода позволяет применять его в крупносерийном производстве при ограниченной номенклатуре односторонних печатных плат.
Сеточнохимический метод аналогичен сеточно-электрохимическому, с той лишь разницей, что исключается операция предварительной химической металлизации изоляционного основания, так как краску наносят непосредственно на фольгу. Точность получаемого изображения составляет ±0,2 мм, разрешающая способность приблизительно равна 1 мм.
Этот метод обладает максимальной производительностью по сравнению с остальными и поэтому рекомендуется для крупносерийного производства при малой номенклатуре односторонних несложных печатных плат. К недостаткам метода относятся: невозможность металлизации в отверстиях; трудность изменения рисунка схемы; непроизводительный расход металла, снимаемого травлением; меньшая точность и разрешающая способность по сравнению с фотохимическим методом; воздействие на изоляционное основание химических реагентов.
Методы фотопереноса, офсетопереноса и сеточного переноса разработаны в Советском Союзе и заключаются в предварительном нанесении на матрицу, изготовленную из нержавеющей стали, фотоэлектрохимическим, офсетно-электрохимическим или сеточноэлектрохимическим методами медных проводников и последующем переносе их на изоляционное основание.
Перенос производят путем совместного прокатывания матрицы и платы между резиновыми валиками под определенным давлением. Плату перед прокатыванием покрывают клеевой пленкой (например, клеем БФ), которую затем, подвергают полимеризации, тем самым обеспечивая надежное сцепление проводников с изоляционным основанием. Точность получения изображения при фотопереносе и офсетопереиосе составляет ±0,2 мм, при сеточном переносе— ±0,3 мм, разрешающая способность равна соответственно 0,5 и 1 мм.
Достоинства этих методов следующие: высокая прочность сцепления проводников с основанием, экономное расходование металла; отсутствие воздействия на изоляционное основание химических реагентов. К недостаткам относятся: длительность процесса изготовления печатных плат; трудности изменения рисунка схемы; невозможность металлизации в отверстиях.
Метод фотопереноса рекомендуется для опытного и серийного производства при большой номенклатуре односторонних печатных плат, а два других метода — для крупносерийного производства при малой номенклатуре односторонних плат.
Разновидностью методов переноса является метод запрессовки проводников, позволяющий использовать пресс-материалы для изготовления основания с одновременным получением печатной схемы.
Проводники предварительно получают электрохимическим осаждением меди на стальную пластинку, а затем одновременно с оформлением контуров платы осуществляют перенос проводников со стальной пластинки, уложенной в матрицу пресс-формы, в пластмассу.
Перенос возможен благодаря слабому сцеплению медных проводников с пластинкой, изготовленной из нержавеющей стали. В процессе полимеризации пластмассы проводники легко отрываются от пластинки и переносятся в пластмассу. После прессования получается готовая плата с проводниками, утопленными в пластмассе. Прессование производят при температуре 150— 160° С и удельным давлением 600—1000 кГ/см2 (для АГ-4).
Существенным достоинством изготовления плат с печатным монтажом методом запрессовки проводников является возможность широкого использования пресс-материалов в качестве оснований. Трудоемкость этого метода значительно ниже, чем электрохимических методов или методов травления фольгированного диэлектрика.
Из приведенного обзора основных методов получения печатных проводников следует, что методы 1 группы позволяют получить переходы с одной стороны платы на другую (металлизированные отверстия) одновременно с созданием проводников. По методам II и III групп изготовляют односторонние печатные схемы. Для перехода с одной стороны платы на другую нужно устанавливать пистоны, которые усложняют сборку и пайку плат и не дают гарантии надежного электрического контакта с печатным проводником.
В зависимости от метода получения проводников ширина их колеблется в пределах 0,4—1,5 мм. При необходимости ее можно увеличить. Наименьшее расстояние между печатными проводниками 0,2 мм, рекомендуемое— 1,5 мм.
Толщина проводников, полученных химическим травлением, определяется исходными материалами (фольгирован’ным диэлектриком) и составляет от 20 до 100 мкм. Толщина фольги равна 50 мкм.
Толщина проводников, полученных методами переноса, составляет 30—90 мкм.
Печатные проводники характеризуются двумя параметрами: электрическим сопротивлением и прочностью сцепления проводника с основанием. Проводники, полученные травлением фольгированного диэлектрика, обладают сопротивлением, соизмеримым с сопротивлением объемного медного проводника эквивалентного сечения. Напри лер, погонное сопротивление печатного проводника толщиной 50 мкм и шириной 1,5 мм составляет примерно 0,03 ом/м.
Проводники, полученные электрохимическим осаждением металла, имеют сопротивление в три раза больше, чем проводники из фольги. В этом случае сопротивление проводника с размерами, приведенными выше, составляет около 1 ом/м.
Печатные проводники допускают большую удельную плотность тока по сравнению с обычными проводниками, так как они имеют хороший тепловой контакт с изоляционным основанием и достаточную теплоизлучаюдую поверхность.
На рис. 1 показана зависимость температуры проводников, имеющих различную ширину, от величины протекающего по ним тока.
Прочность сцепления печатных проводников, изготовленных по методам 1 группы, составляет не менее 10—20 кГ/см2, по методам II и III групп — не менее 25—30 кГ/см2. Такое сцепление вполне обеспечивает прочность монтажа как при дальнейшей технологической обработке плат, так и во время эксплуатации аппаоатусы.
Поверхностное сопротивление изоляции между дв\мя металлизированными проводниками или отверстиями равно 500 Мом (в нормальных климатических условиях для рассмотренных диэлектриков).
Рис. 1. Зависимость температуры проводников от величины протекающего по ним юка
Читать далее:
Автоматизация производства радиоаппаратуры на печатном монтаже
Статьи по теме:
pereosnastka.ru
© 2005-2018, Национальный Экспертный Совет по Качеству.