Содержание
Состав и свойства пластмасс
Главная
Инфоблок
Аналитика, экспертные мнен…
/
/
/
org/ListItem»>Состав и свойства пластмас…
Пластмассы получают обычно из связующего вещества и наполнителя, вводя в состав исходной массы те или иные специальные добавки-пластификаторы, отвердители, стабилизаторы и красители.
Связующие вещества
Связующим веществом в пластмассах служат различные полимеры – синтетические смолы и каучуки, производные целлюлозы. Выбор связующего вещества в значительной мере определяет технические свойства изделий из пластмасс: их теплостойкость, способность сопротивляться воздействию растворов кислот, щелочей и других агрессивных веществ, а также характеристика прочности и деформативности. Связующее вещество – это обычно самый дорогой компонент пластмассы.
Для производства полимеров имеются огромные запасы сырья. Исходными материалами для их получения являются природный газ и так называемый «попутный» газ, сопровождающий выходы нефти. В газообразных продуктах переработки нефти содержится этилен, пропилен и другие газы, перерабатываемые на предприятиях в полимеры.
Сырьем для полимеров служит также каменноугольный деготь, получаемый при коксовании угля и содержащий фенол и другие компоненты.
В производстве синте5тических материалов применяют также азот и кислород, получаемые из воздуха, воду и ряд других широко распространенных веществ.
Наполнители
Наполнители представляют собой разнообразные неорганические и органические порошки и волокна. В виде наполнителей слоистых пластмасс порошки и волокна. В форме наполнителей слоистых пластмасс широко используют также бумагу, ткани, древесный шпон и другие листовые материалы. Наполнители существенно уменьшают потребность в дорогом полимере и тем самым намного удешевляют изделия из пластмасс. Кроме того, наполнители улучшают ряд свойств изделий – повышают теплостойкость, а волокна ткани и листовой материалы сильно повышают сопротивление растяжению и изгибу, действуя подобно арматуре в железобетоне.
Пластификаторы
Пластификаторы – это вещества, добавляемые к полимеру для повышения его высокой эластичности и уменьшения хрупкости. В виде пластификаторов могут использоваться некоторые низкомолекулярные высококипящие жидкости. Молекулы жидкости, проникая между звеньями цепей полимера, увеличивают расстояние и ослабляют связи между ними. Это и приводит к уменьшению вязкости полимера.
При изготовлении пластмасс в их состав добавляют и другие добавки. Вещества, являющиеся инициаторами реакции полимеризации, убыстряют процесс отверждения пластмасс и их поэтому называют отвердителями. Добавки стабилизаторы способствуют сохранению структуры и свойства пластмасс во времени, предотвращая их раннее старение при воздействии солнечного света, кислорода воздуха, нагрева и других неблагоприятных влияний.
— подробно узнать о всех работах, выполняемых в составе обследования, можно в разделе:
«Обследование конструкций, помещений, зданий, сооружений, инженерных сетей и оборудования.»
В качестве красителей пластмасс применяют как органические (нигрозин, хризоидин и др.), так и минеральные пигменты – охру, мумие, сурик, ультрамарин, белила и др.
Для производства пористых пластических масс в полимеры вводят специальные вещества – порообразователи (порофоры), обеспечивающие создание в материале пор.
Положительным свойством пластмасс является то, то возможно получить некоторые материалы с высокими показателями, например:
— малая плотность в пределах от 20 до 2200 кг/м3;
— высокие прочностные характеристики – у текстолита предел прочности при разрыв5е достигает 150 МПа, у древопластиков равен 350 МПа. Пределы прочности при сжатии этих материалов также достаточно высоки, например, у древопластиков порядка 200 МПа, у СВАМа (стекловолокнистый анизотропный материал) – 420 МПа. Пластмассы с наполнителями (как порошкообразными, так и волокнистыми) имеют предел прочности при сжатии в пределах от 120 до 160 МПа;
— низкая теплопроводность. Самые легкие пористые пластмассы имеют показатель теплопроводности всего лишь 0,03 Вт/(м*°C), т.е. близкий к теплопроводности воздуха;
— высокая химическая стойкость;
— высокая устойчивость к коррозионным воздействиям;
— способность окрашиваться в различные цвета;
— малая истираемость некоторых пластмасс. В связи с этим в первую очередь эти пластмассы целесообразно внедрять как материалы для покрытия полов;
— прозрачность пластмасс. Органические стекла пропускают менее 1% ультрафиолетовых лучей, тогда как обычные – более 70%; они легко окрашиваются в различные цвета. Так, стекло из полистирола имеет плотность 1060 кг/м3, тогда как обычное оконное стекло – 2500 кг/м3;
— технологическая легкость обработки (пиление, сверление, фрезерование строгание, обточка и др. ), позволяющая придавать изделиям из пластмасс разнообразные формы. Пластмассовые конструкции и изделия поддаются склеиванию как между собой, так и с другими материалами (например, с металлом, деревом и др.). Поэтому из пластмасс можно изготовлять различные комбинированные клееные строительные изделия и конструкции;
— подробно узнать о всех работах, выполняемых в составе исследований и экспертизы, можно в разделе:
«Исследование конструкций и материалов. Экспертиза деталей, изделий, узлов, элементов и пр.»
— относительная легкость сварки материалов из пластмасс (например, труб в струе горячего воздуха) позволяет механизировать работы по монтажу пластмассовых трубопроводов;
— способность некоторых пластмасс образовывать тонкие пленки в сочетании с их высокой адгезией к ряду материалов, вследствие чего такие пластмассы незаменимы как сырье для производства строительных лаков и красок;
— наличие в стране обширной сырьевой базы для производства полимеров (природные газы, газы нефтепереработки).
Вместе с тем пластмассы имею ряд недостатков. К отрицательным свойствам большинства пластических масс нужно прежде всего отнести их низкую теплостойкость (от +70 до +200°C). Пластические массы имеют малую поверхностную твердость. Значительным недостатком пластмасс является высокий коэффициент термического расширения. Это необходимо учитывать при проектировании строительных конструкций, особенно крупноразмерных (например, трубопроводов).
Не могут быть игнорированы и другие отрицательные строительные свойства пластмасс – их повышенная ползучесть, особенно заметная при повышении температурного режима, а также некоторых из них обладают горючестью с выделением вредных газов и токсичностью при эксплуатации.
К недостаточно изученным свойствам пластмасс следует отнести сроки из службы. Между тем вопросы долговечности материалов, изменяемости их свойств во времени в значительной мере определяют их применения в строительстве.
Автор: к. т.н. Иванов М.И.
Техническая строительная экспертиза
Узнать стоимость и сроки online, а также по тел.: +7(495) 641-70-69; +7(499) 340-34-73; e-mail: [email protected]
Читайте также:
Битумные и дегтевые мастикиЗащита древесины от гниения, поражения насекомыми и возгоранияОсновные виды асбестоцементных изделийСтруктура и свойства стекла и стеклоизделийСтроительные материалы. Строение и свойства.Защита деревянных конструкций от влажности и биологического разрушения
Пневматические строительные конструкции
Настилы покрытий и обшивки стен из волокнистых стеклопластиковых листовВиды соединений конструкций из дерева и пластмасс
Мониторинг технического состояния зданий, сооружений, строительных конструкций. Цели и задачи мониторинга.
Независимая техническая строительная экспертиза дома. Консалтинг в строительстве. Определение величины причиненного материального ущерба в результате некачественного выполнения проектных, строительно-монтажных, отделочных и ремонтных работ
Техническое обследование и реконструкция зданий и сооружений
Пластмассы. Состав, свойства, применение пластмасс
Содержание страницы
- 1. Компоненты, входящие в состав пластмасс
- 2. Классификация пластмасс
- 3. Механические свойства пластмасс
- 4. Сварка пластмасс
- 5. Другие свойства пластмасс
Пластмассы (пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определённую устойчивую форму.
Полимеры – это соединения, которые получаются путем многократного повторения (рис. 1), то есть химического связывания одинаковых звеньев – в самом простом случае, одинаковых, как в случае полиэтилена это звенья CH2, связанные между собой в единую цепочку. Конечно, существуют более сложные молекулы, вплоть до молекул ДНК, структура которых не повторяется, очень сложным образом организована.
Рис. 1. Формы макромолекул полимеров
1. Компоненты, входящие в состав пластмасс
В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.
Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.
Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.
Стабилизаторы – вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.
Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).
Смазочные вещества – стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.
2. Классификация пластмасс
В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.
Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.
Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.
К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).
Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс
В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.
Таблица 1.
Рис. 3. Изделия, где применены термореактивные пластмассы
Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.
Рис. 4. Пресс-форма для литья пластмасс
В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.
Таблица 2.
Рис. 5. Изделия из термопластичных пластмасс
Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).
3. Механические свойства пластмасс
Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).
Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)
Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.
Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).
Рис. 7. Детали конструкционного применения из пластмасс
В таблице 3 указаны механические свойства термопластов общего назначения.
Таблица 3.
Несколько примеров по обозначению (см. табл. ниже).
ПЭВД | Полиэтилен высокого давления | ГОСТ 16337-77 | |
ПЭНД | Полиэтилен низкого давления | ГОСТ 16338-85 | |
ПС | Полистирольная плёнка | ГОСТ 12998-85 | |
ПВХ | Пластификаторы | ГОСТ 5960-72 | |
АБС | Акрилбутодиентстирол | ГОСТ 8991-78 | |
ПММА | Полиметилметаакрилат | ГОСТ 2199-78 |
4.
Сварка пластмасс
Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.
Пластмассы можно сваривать различными способами:
- нагретым газом;
- контактной теплотой от нагревательных элементов;
- трением;
- ультразвуком (рис. 8).
Основные условия для получения качественного соединения пластмасс при сварке следующие:
- Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
- Сварку следует вести по возможности быстро во избежание термического разложения материала.
- Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.
На рис. 8 показано оборудование и методы сварки пластмасс.
Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров
5. Другие свойства пластмасс
Химическая стойкость. Химическая стойкость пластмасс, как правило, выше, чем у металлов. Химическая стойкость пластмасс в основном определяется свойствами связующего (смолы) и наполнителя. Наиболее химически стойкими в отношении всех агрессивных сред являются фторсодержащие полимеры —фторопласты 4 и 3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт и фенопласты с асбестовым наполнителем. Стойкими к действию щелочей являются винипласт и хлорвиниловый пластик.
Электроизоляционные свойства. Почти все пластмассы — хорошие диэлектрики. Этим объясняется их широкое применение в электро- и радиотехнике. Большинство пластмасс плохо переносит т. в. ч. и поэтому они применяются в качестве электроизоляционных материалов для деталей, которые предназначаются для работы при частоте тока 50 Гц. Однако такие ненаполненные высокополимеры, как фторопласт и полистирол, практически не меняют своих диэлектрических качеств в зависимости от частоты тока и могут работать при высоких и сверхвысоких частотах.
Повышение температуры, как правило, ухудшает электроизоляционные характеристики пластмасс. Исключение составляет полистирол, сохраняющий электроизоляционные свойства в интервале температур от —60 до +60° С, и фторопласт 4 — в интервале температур от —60 до +200°. С.
Фрикционные свойства. В зависимости от условий работы пластмассовые детали могут обладать различными по величине фрикционными характеристиками. Так, например, текстолит при малых нагрузках имеет малый коэффициент трения, что и позволяет широко использовать его вместо бронзы, антифрикционных чугунов и т. д. Коэффициент трения тормозных материалов типа КФ-3 высок, что и отвечает назначению этих материалов. Из этих двух примеров следует, что утверждение, высказанное выше, справедливо
Просмотров:
24 687
Пластмассовые материалы: типы, состав и применение
Полимеры произвели революцию в производстве материалов и снизили стоимость конечной продукции. В этой статье мы объясняем различные типы наиболее часто используемых пластиковых материалов , их свойства и использование.
Номер:
- Что такое пластмассы?
- Классификация пластмасс
- 1. Полиэтилентерефталат (PET или PETE):
- 2. Полиэтилен (PE):
- 3. Полипропилен (ПП)
- 4. Поликарбонат (ПК)
- 5. Поливинилхлорид (ПВХ)
- 6. Полистирол (ПС)
- Испытание полимеров
Что такое пластмассы?
Одним из главных нововведений 20-го века стало внедрение и разработка пластиковых материалов и их использование во многих областях, как в промышленности, так и в быту, которые ранее основывались на традиционных материалах, таких как металл, стекло или керамика.
Пластик легкий , прочный, недорогой и легко модифицируемый материал. Он состоит из полимеров , которые представляют собой большие органические молекулы, состоящие из повторяющихся углеродных единиц или цепей, называемых мономерами, таких как этилен, пропилен, винилхлорид и стирол.
Мономеры получают из нефти и ископаемого топлива или из биомассы в случае биопластиков и определяют основные свойства, структуру и размер полимеров. Однако в производственный процесс также включаются добавки, которые модифицируют, оптимизируют и улучшают свойства пластмасс. Например, они улучшают гибкость или долговечность полимера, устойчивость к УФ-разложению и возгоранию или добавляют цвет.
Классификация пластмасс
В целом пластмассы можно разделить на термопласты и термореактивные материалы . При нагревании термопластичные компоненты могут многократно формоваться и деформироваться, в то время как термореактивные материалы не могут подвергаться повторной формовке после формования. Термопласты наиболее распространены и включают, среди прочего, полиэтилен (PE), полипропилен (PP), полиэтилентерефталат (PET), поливинилхлорид (PVC) и полистирол (PS). Некоторые термореактивные пластмассы представляют собой полиуретан (PUR) и эпоксидные смолы или покрытия.
Ниже приводится классификация наиболее распространенных пластиков:
1. Полиэтилентерефталат (ПЭТ или ПЭТ):
ПЭТ является одним из наиболее широко производимых пластиковых материалов в мире. Он считается безопасным для пищевых продуктов и напитков и обладает высокой способностью предотвращать проникновение кислорода в упаковку и порчу продуктов. Это недорогой и прочный пластик марки , пригодный для повторного использования, с очень хорошим соотношением прочности и веса. Он используется для производства упаковки для пищевых продуктов, пластиковых бутылок и полиэфирного волокна, например, используемого в одежде. Он также используется в самых разных областях промышленности, включая производство стекловолокна и углеродных нанотрубок .
2. Полиэтилен (ПЭ):
Это самый распространенный пластик на земле, и может производиться с различной плотностью . Каждая плотность придает конечному пластику уникальные физические свойства. В результате полиэтилен встречается в широком ассортименте продукции.
LDPE имеет высокую пластичность y, но низкую прочность на растяжение, что делает его более гибким, чем другие пластики. Он используется для производства таких продуктов, как пластиковые пакеты, прозрачная упаковка для пищевых продуктов, одноразовая упаковка и кабельная изоляция, среди прочего.
Обладая большим количеством полимерных цепей и, следовательно, более высокой плотностью, полиэтилен средней плотности часто используется в газовых трубах, термоусадочной пленке, сумках и завинчивающихся крышках.
ПЭВП считается экологически безопасным, и производство этого типа пластика требует лишь небольшой доли энергии, необходимой для производства стали из железной руды. Это пластик, который устойчив к разложению , воздействиям окружающей среды и является достаточно жестким, поэтому он используется для производства множества продуктов, таких как материал 9.0003 контейнеры, ведра, вывески, звездочки, водопроводные и канализационные трубы .
UHMWPE характеризуется высокой плотностью и стойкостью к истиранию благодаря чрезвычайно длинной полимерной цепи. Обладая высокой плотностью , прочностью и низким коэффициентом трения, он используется в военной броне , уплотнениях , гидравлических подшипниках и биоматериалах таких как медицинские протезные имплантаты.
3. Полипропилен (ПП)
Полипропилен представляет собой очень твердый, термостойкий , полупрозрачный пластик, который сохраняет свою форму после многократного скручивания, изгиба или складывания. Его широкое использование и популярность несомненны, так как он является одним из самых гибких термопластичных полимеров на планете. Прочный, гибкий, термостойкий, кислотостойкий и недорогой полипропиленовый лист используется для производства лабораторного оборудования , автомобильных деталей, петель, медицинских устройств и упаковки для пищевых продуктов , среди прочего.
4. Поликарбонат (ПК)
Прочный, стабильный и прозрачный поликарбонат представляет собой превосходный инженерный пластик, прозрачный как стекло и в 250 раз прочнее . С прозрачными поликарбонатными листами легко работать, легко формовать, и, несмотря на то, что они чрезвычайно прочны и ударопрочны, поликарбонатный пластик обладает присущей ему гибкостью конструкции. Он содержится в самых разных продуктах, таких как теплицы, DVD-диски, солнцезащитные очки, защитное снаряжение и т. д.
5. Поливинилхлорид (ПВХ)
ПВХ представляет собой полимер, который обладает жесткими или гибкими свойствами и хорошо известен своей способностью смешиваться с другими материалами . Например, вспененный лист ПВХ представляет собой материал из вспененного поливинилхлорида, который идеально подходит для таких продуктов, как киоски, витрины магазинов и выставки. Жесткая форма ПВХ обычно используется в строительных материалах , дверях, окнах, напольных покрытиях, облицовке и т. д. С добавлением пластификаторов, таких как фталаты, более мягкая и гибкая форма ПВХ встречается в сантехнических изделиях, электрических кабелях. изоляция, одежда, медицинские трубки и другие подобные продукты.
6. Полистирол (ПС)
Это прозрачный термопласт, который можно найти как в твердом пластике, так и в жестком вспененном материале . Использование полистирола широко распространено и используется в упаковке, медицинских устройствах, таких как пробирки или чашки Петри, арахис из пенополистирола, детали бытовой техники, автомобили и компьютеры , среди прочего. В промышленности он особенно используется для изготовления звездочек для роликовых цепей, седла стержня или шкива.
Испытания полимеров
Испытания играют ключевую роль в жизненном цикле полимера, от сырья до соединения и конечного продукта. Каждый этап предъявляет различные требования к тестированию и может потребовать различного типа тестирования в зависимости от его полезности, будь то разработка продукта, контроль качества, характеристика материала, тестирование свойств или судебно-технический анализ для выявления отказов.
Некоторые из наиболее распространенных тестов, которым подвергаются пластиковые материалы:
- Механические испытания , такие как растяжение, изгиб, сдвиг и сжатие.
- Физические испытания , которые включают испытания на плотность, твердость и устойчивость к царапинам.
- Реологические испытания , включая испытания на капиллярность, вращение или скорость течения расплава.
- Термические испытания .
- Оптические тесты .
- Климатические испытания .
Короче говоря, большое разнообразие доступных типов продуктов и добавок делает понимание возможностей и ограничений материала ключевым вопросом для поставщиков, производителей и разработчиков продуктов на всех уровнях производственной цепочки. Механические, термические, оптические, реологические и климатические испытания обеспечивают лучшее понимание материала, продукта и характеристик .
Если вы ищете комплексный подход, который поможет вам соответствовать спецификациям производительности вашей продукции, наш объединенный опыт и знания в области испытаний окажут вам необходимую помощь. Свяжитесь с нами, и наши специалисты проанализируют ваш случай, чтобы предложить вам лучшее решение.
пластик | Состав, история, использование, типы и факты
пластиковые бутылки из-под безалкогольных напитков
Просмотреть все СМИ
- Связанные темы:
- микропластик
биопластик
полиметилметакрилат
композитный материал
полимеризация
Просмотреть весь связанный контент →
Резюме
Прочтите краткий обзор этой темы
пластмасса , полимерный материал, который можно формовать или формовать, обычно под воздействием тепла и давления. Это свойство пластичности, часто встречающееся в сочетании с другими особыми свойствами, такими как низкая плотность, низкая электропроводность, прозрачность и ударная вязкость, позволяет изготавливать из пластмасс самые разнообразные продукты. К ним относятся прочные и легкие бутылки для напитков из полиэтилентерефталата (ПЭТ), гибкие садовые шланги из поливинилхлорида (ПВХ), изолирующие пищевые контейнеры из вспененного полистирола и небьющиеся окна из полиметилметакрилата.
В этой статье представлен краткий обзор основных свойств пластмасс, за которым следует более подробное описание их переработки в полезные продукты и последующей переработки. Для более полного понимания материалов, из которых изготавливаются пластмассы, см. Химия промышленных полимеров.
Многие химические названия полимеров, используемых в качестве пластмасс, стали знакомы потребителям, хотя некоторые из них более известны по своим аббревиатурам или торговым названиям. Таким образом, полиэтилентерефталат и поливинилхлорид обычно называют ПЭТФ и ПВХ, а вспененный полистирол и полиметилметакрилат известны под своими товарными знаками: пенополистирол и оргстекло (или плексиглас).
Промышленные производители пластмассовых изделий склонны рассматривать пластмассы либо как «товарные» смолы, либо как «специальные» смолы. (Термин смола восходит к ранним годам индустрии пластмасс; первоначально он относился к встречающимся в природе аморфным твердым веществам, таким как шеллак и канифоль.) Товарные смолы — это пластмассы, которые производятся в больших объемах и по низкой цене для наиболее распространенных одноразовых предметов. и товары длительного пользования. Они представлены в основном полиэтиленом, полипропиленом, поливинилхлоридом, полистиролом. Специальные смолы — это пластмассы, свойства которых адаптированы к конкретным применениям и которые производятся в небольших объемах и по более высокой цене. В эту группу входят так называемые инженерные пластмассы или инженерные смолы, представляющие собой пластмассы, которые могут конкурировать с литыми под давлением металлами в сантехнике, скобяных изделиях и автомобилях. Важными инженерными пластмассами, менее знакомыми потребителям, чем товарные пластмассы, перечисленные выше, являются полиацеталь, полиамид (особенно те, которые известны под торговой маркой нейлон), политетрафторэтилен (торговая марка тефлон), поликарбонат, полифениленсульфид, эпоксидная смола и полиэфиркетон. Еще одним представителем специальных смол являются термопластичные эластомеры, полимеры, которые обладают эластичными свойствами резины, но при этом могут подвергаться многократному формованию при нагревании. Термопластичные эластомеры описаны в статье эластомер.
Викторина «Британника»
Викторина «Знай свою химию»
От элементов периодической таблицы до процессов, создающих предметы повседневного обихода — это лишь некоторые из вещей, которым может научить нас химия. Можете ли вы отфильтровать свой путь через нашу викторину по химии?
Пластмассы также можно разделить на две отдельные категории на основе их химического состава. Одна категория — пластмассы, состоящие из полимеров, содержащих только алифатические (линейные) атомы углерода в основных цепях. Все перечисленные выше товарные пластики попадают в эту категорию. Примером может служить структура полипропилена; здесь к каждому другому атому углерода присоединена боковая метильная группа (CH 3 ):
Другая категория пластмасс состоит из гетероцепных полимеров. Эти соединения содержат такие атомы, как кислород, азот или сера в своих основных цепях, в дополнение к углероду. Большинство перечисленных выше инженерных пластиков состоят из гетероцепных полимеров. Примером может служить поликарбонат, молекулы которого содержат два ароматических (бензольных) кольца:
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас
Различие между полимерами с углеродной цепью и полимерами с гетероцепью отражено в таблице, в которой показаны избранные свойства и области применения наиболее важных пластиков с углеродной цепью и гетероцепью, а также даны прямые ссылки на статьи, описывающие эти материалы. более подробно. Важно отметить, что для каждого типа полимера, указанного в таблице, может быть множество подтипов, поскольку любой из десятка промышленных производителей любого полимера может предложить 20 или 30 различных вариаций для использования в конкретных приложениях. По этой причине свойства, указанные в таблице, следует принимать как приблизительные.
Свойства и применение коммерчески важных пластмасс | |||||
---|---|---|---|---|---|
*Все значения приведены для образцов, армированных стекловолокном (кроме полиуретана). | |||||
Углеродная цепь | |||||
полиэтилен высокой плотности (HDPE) | 0,95–0,97 | высокая | –120 | 137 | — |
полиэтилен низкой плотности (LDPE) | 0,92–0,93 | умеренный | −120 | 110 | — |
полипропилен (ПП) | 0,90–0,91 | высокая | −20 | 176 | — |
полистирол (ПС) | 1,0–1,1 | ноль | 100 | — | — |
акрилонитрил-бутадиен-стирол (АБС) | 1,0–1,1 | ноль | 90–120 | — | — |
поливинилхлорид непластифицированный (ПВХ) | 1,3–1,6 | ноль | 85 | — | — |
полиметилметакрилат (ПММА) | 1,2 | ноль | 115 | — | — |
политетрафторэтилен (ПТФЭ) | 2. 1–2.2 | умеренно-высокий | 126 | 327 | — |
гетероцепь | |||||
полиэтилентерефталат (ПЭТ) | 1,3–1,4 | умеренный | 69 | 265 | — |
поликарбонат (ПК) | 1,2 | низкий | 145 | 230 | — |
полиацеталь | 1,4 | умеренный | –50 | 180 | — |
полиэфиркетон (PEEK) | 1,3 | ноль | 185 | — | — |
полифениленсульфид (PPS) | 1,35 | умеренный | 88 | 288 | — |
диацетат целлюлозы | 1,3 | низкий | 120 | 230 | — |
поликапролактам (нейлон 6) | 1,1–1,2 | умеренный | 50 | 210–220 | — |
гетероцепь | |||||
полиэстер (ненасыщенный) | 1,3–2,3 | ноль | — | — | 200 |
эпоксидные смолы | 1,1–1,4 | ноль | — | — | 110–250 |
фенолформальдегид | 1,7–2,0 | ноль | — | — | 175–300 |
мочевина и меламиноформальдегид | 1,5–2,0 | ноль | — | — | 190–200 |
полиуретан | 1,05 | низкий | — | — | 90–100 |
Углеродная цепь | |||||
полиэтилен высокой плотности (HDPE) | 20–30 | 10–1000 | 1–1,5 | молочные бутылки, изоляция проводов и кабелей, игрушки | |
полиэтилен низкой плотности (LDPE) | 8–30 | 100–650 | 0,25–0,35 | упаковочная пленка, продуктовые пакеты, сельскохозяйственная мульча | |
полипропилен (ПП) | 30–40 | 100–600 | 1,2–1,7 | бутылки, контейнеры для еды, игрушки | |
полистирол (ПС) | 35–50 | 1–2 | 2,6–3,4 | столовые приборы, пенопластовые пищевые контейнеры | |
акрилонитрил-бутадиен-стирол (АБС) | 15–55 | 30–100 | 0,9–3,0 | корпуса приборов, каски, фитинги | |
поливинилхлорид непластифицированный (ПВХ) | 40–50 | 2–80 | 2,1–3,4 | трубы, трубопровод, сайдинг, оконные рамы | |
полиметилметакрилат (ПММА) | 50–75 | 2–10 | 2,2–3,2 | ударопрочные окна, световые люки, козырьки | |
политетрафторэтилен (ПТФЭ) | 20–35 | 200–400 | 0,5 | самосмазывающиеся подшипники, посуда с антипригарным покрытием | |
гетероцепь | |||||
полиэтилентерефталат (ПЭТ) | 50–75 | 50–300 | 2,4–3,1 | прозрачные бутылки, магнитофон | |
поликарбонат (ПК) | 65–75 | 110–120 | 2,3–2,4 | компакт-диски, защитные очки, спортивные товары | |
полиацеталь | 70 | 25–75 | 2,6–3,4 | подшипники, шестерни, душевые лейки, молнии | |
полиэфиркетон (PEEK) | 70–105 | 30–150 | 3,9 | машины, автомобильные и аэрокосмические детали | |
полифениленсульфид (PPS) | 50–90 | 1–10 | 3,8–4,5 | детали машин, приборы, электрооборудование | |
диацетат целлюлозы | 15–65 | 6–70 | 1,5 | фотопленка | |
поликапролактам (нейлон 6) | 40–170 | 30–300 | 1,0–2,8 | подшипники, шкивы, шестерни | |
гетероцепь | |||||
полиэстер (ненасыщенный) | 20–70 | <3 | 7–14 | корпуса лодок, автомобильные панели | |
эпоксидные смолы | 35–140 | <4 | 14–30 | ламинированные печатные платы, напольные покрытия, детали самолетов | |
фенолформальдегид | 50–125 | <1 | 8–23 | электрические разъемы, ручки приборов | |
мочевина и меламиноформальдегид | 35–75 | <1 | 7,5 | столешницы, посуда | |
полиуретан | 70 | 3–6 | 4 | гибкие и жесткие пеноматериалы для обивки, изоляции | |
Для целей настоящей статьи пластмассы в первую очередь определяются не на основе их химического состава, а на основе их технических характеристик.