ДОМАШНИЙ БИЗНЕС

БИЗНЕС БЕЗ ВЛОЖЕНИЙ

БИЗНЕС ДЛЯ ЖЕНЩИН

МАЛЫЙ БИЗНЕС

БИЗНЕС-ПЛАН

ИДЕИ ДЛЯ БИЗНЕСА

БИЗНЕС-СОВЕТЫ

БИЗНЕСМЕНАМ

ИНТЕРНЕТ-БИЗНЕС

Современный водородный генератор: 5 его преимуществ. Водородные установки


Водородный генератор своими руками: схема, конструкция установки, чертежи

Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев – энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:

  • разобрать вопрос, как сделать водородный генератор с минимальными затратами;
  • рассмотреть возможность применения установки для отопления частного дома, заправки авто и в качестве сварочного аппарата.

Краткая теоретическая часть

Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:

  1. Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
  2. Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
  3. Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
  4. Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
  5. Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.

Для справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.

Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывались

Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:

2h3 + O2 → 2h3O + Q (энергия)

Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:

2h3O → 2h3 + O2 — Q

Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.

Создание опытного образца

Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.

Из чего состоит примитивный электролизер:

  • реактор – стеклянная либо пластиковая емкость с толстыми стенками;
  • металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
  • второй резервуар играет роль водяного затвора;
  • трубки для отвода газа HHO.

Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.

Принцип работы электролизера следующий:

  1. К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
  2. В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
  3. Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
  4. Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.

Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.

Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:

  1. Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
  2. Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
  3. Поместите электроды в бутылку и завинтите крышку.
  4. Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.

Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.

Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:

О водородной ячейке Мейера

Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.

Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:

Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.

Для изготовления ячейки Мейера потребуется:

  • цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
  • трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
  • провода, изоляторы.

Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.

Соединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.

Принципиальная схема включения электролизера

Реактор из пластин

Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.

Кроме листовой нержавейки марки 316 понадобится купить:

  • резина толщиной 4 мм, стойкая к воздействию щелочи;
  • концевые пластины из оргстекла либо текстолита;
  • шпильки стяжные М10—14;
  • обратный клапан для газосварочного аппарата;
  • фильтр водяной под гидрозатвор;
  • трубы соединительные из гофрированной нержавейки;
  • гидроокись калия в виде порошка.

Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.

Примечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.

Схема генератора мокрого типа

Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:

  1. На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
  2. В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
  3. Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».

Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:

Выгодно ли получать водород в домашних условиях

Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:

  • использовать hydrogen в качестве топлива для автомобилей;
  • бездымно сжигать водород в отопительных котлах и печах;
  • применять для газосварочных работ.

Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.

Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.

Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.

Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:

  1. Конечная цена установки, низкая производительность и КПД делает крайне невыгодным сжигание водорода для отопления частного дома. Чем «наматывать» счетчик электролизером, проще поставить любой из электрокотлов – ТЭНовый, индукционный либо электродный.
  2. Чтобы заменить 1 л бензина для автомобиля, потребуется 4766 литров чистого водорода или 7150 л гремучего газа, треть которого составляет кислород. Самый завравшийся изобретатель в интернете еще не сделал электролизер, способный обеспечить подобную производительность.
  3. Газосварочный аппарат, сжигающий hydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.

Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.

Заключение

Водород в составе газа ННО, полученный из самодельного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.

otivent.com

Авто на водороде. HHO-генератор водорода на авто

Автомобилестроение является одним из самых перспективных направлений промышленности. Мировые концерны стремятся вкладывать немалые деньги в развитие новых технологий, которые в будущем должны улучшить эксплуатационные качества транспортных средств. Малейшее изменение в принципах работы автомобиля способно кардинально изменить его динамику, ходовые качества, а также уровень безопасности. При этом наиболее значительные перемены обещают альтернативные источники топлива и, в частности, авто на водороде, которые уже сегодня можно наблюдать в линейках передовых производителей. Несмотря на появление серийных моделей такого типа, конструкторы все еще находятся в поисках наилучшего применения водорода. Но тот факт, что внедрение данного топлива в алгоритм действия двигателя приносит целый ряд преимуществ, бесспорен.

Специфика водородных автомобилей

Далеко не всегда переход от традиционных технологий к новым решениям позволяет достичь улучшения качественных показателей эксплуатации транспорта. Так происходит с электромобилями, которые хоть и считаются экологически чистым и сравнительно экономным видом технического средства, но имеют много недостатков, среди которых неудовлетворительная динамика. В свою очередь, авто на водороде при условии сбалансированного устройства топливных элементов может сохранить и достоинства машин с классическими двигателями, и обеспечить несколько новых преимуществ. Интерес к данному виду топлива со стороны производителей обусловлен возможностью повышения экологичности транспорта, а также экономией энергоносителя. По сравнению с обычными двигателями внутреннего сгорания агрегаты на водороде практически не выбрасывают вредные вещества. Такого результата можно добиться лишь при условии полного избавления от традиционных моторов, а в этом случае будут заметны и сокращения в мощности.

Комбинация водорода и ДВС

На сегодняшний день автопроизводители используют несколько концепций применения водорода. Одной из самых распространенных является гибридный вариант, при котором происходит совмещение двигателя внутреннего сгорания и водородных элементов. Изначально концептуальные авто на водороде, выполненные с таким подходом, отличались невысокой мощностью. Однако последние разработки демонстрируют обратную ситуацию, когда силовой потенциал увеличивается на 10-15%. Но, опять же, повышение мощности нивелирует преимущество в виде экологической чистоты и стоимости содержания машины. Есть и другой негативный фактор от использования водорода в системе ДВС. В процессе эксплуатации топливо вступает в реакцию с элементами конструкции, что существенно сокращает рабочий ресурс материалов силового агрегата.

Технические характеристики машин на водороде

Первым серийником, который снабжался водородной силовой установкой, является четырехдверный седан Mirai от концерна Toyota. Разработчики использовали нестандартную конфигурацию, в которой основу начинки представляет электромотор, подключенный к преобразователю водорода. В итоге гибридная машина обеспечивает 151 л. с., максимальную скорость в 180 км/ч и разгон до «сотни» за 9 сек. При этом одна заправка позволяет преодолевать почти 500 км, что очень неплохо для первого авто на водороде. Технические характеристики водородных кроссоверов также впечатляют – например, Hyundai Intrado получил аккумулятор на 36 кВт*ч, обеспечивающий ход до 600 км. Но самое важное, что вредные выбросы в данном случае сведены к нулю. Компании уже сегодня предлагают водородные машины с привлекательными рабочими данными. Среди останавливающих этот прогресс факторов можно отметить лишь отсутствие инфраструктуры, позволяющей использовать новые технологии широкой массе потребителей.

Генераторы водорода

Пока крупные производители осваивают высокотехнологичные двигатели, задействующие водород в качестве источника энергообеспечения, в среднем звене наблюдается распространение вспомогательных генераторов, позволяющих перерабатывать топливные элементы данного типа. Поскольку основной целью использования новых видов топлива является повышение экологичности процесса и снижение стоимости питания, то в некоторых случаях для этого достаточно внедрить в конструкцию только соответствующий реактор. Такую функцию, в частности, выполняет HHO-генератор водорода на авто, который также называют газовым преобразователем. При этом существует две разновидности таких установок – с жидкими и сухими компонентами. С точки зрения эффективности, выгоднее второй вариант, так как жидкие элементы требуют больших объемов тока, повышая размеры батареи.

Принцип работы водородных реакторов

Устройство генератора включает в себя фильтры, шланги, элементы питания, клапаны и систему контроля. Данная инфраструктура предназначена для того, чтобы в процессе работы двигателя обеспечивалось смешивание основного топлива и водородной смеси. Дело в том, что обычный ДВС даже в самых лучших исполнениях не способен гарантировать полное сгорание бензина. Специальный реактор водорода для авто оптимизирует процесс работы клапанов, повышая интенсивность компрессии и, соответственно, объемы сгорания. В момент сжатия смеси поршнем водородная смесь увеличивает октановое число, тем самым способствуя эффективному сжиганию горючего. Существуют разные технологические подходы к реализации этого процесса, но все они, в той или иной степени, сокращают объем вредных выбросов в атмосферу и экономят расход основного топлива.

Авто на водороде своими руками

Монтаж выполняется в подкапотном пространстве с последующим подключением энергоснабжения от бортовой сети. Газ подается через систему воздушного забора, при этом не требуя создания специальной врезки для топливного канала. Важно отметить, что топливом для таких генераторов выступает раствор на основе питьевой соды и дистиллированной воды. В зависимости от комплектации пакета установка водорода на авто может осложниться за счет включения электродов, обеспечивающих более эффективное расщепление смесей. Однако подобные устройства пока встречаются только на экспериментальных концептах. Для рядового пользователя гораздо важнее обеспечивать снабжение машины качественным раствором с поправкой на сезонность. Например, чтобы агрегат не замерз в зимнее время, рекомендуется добавлять в состав изопропиловый спирт.

Положительные отзывы о водородных машинах

С точки зрения экологических организаций и самих производителей, преимущества использования водорода очевидны. Что касается конечного потребителя, то для него выгода от применения новых топливных элементов пока не так выражена. Тем не менее наиболее удачные образцы автомобилей такого типа демонстрируют экономию при эксплуатации, что в будущем может стать одним из главных факторов популярности данной техники. В плане динамических качеств и мощности генератор водорода для авто вызывает противоречивые суждения, но и тут есть положительные сдвиги. Рациональный расход топлива дает не только экономию, но и повышение производительности силовой установки – соответственно, в некоторых случаях повышается и мощность.

Негативные отзывы

Даже если дело касается передовых разработок в этой области, пользователям приходится сталкиваться с проблемами неразвитой инфраструктуры. Как и в случае с другими версиями гибридов, водородные машины требуют обслуживания на специальных станциях. Конечно, есть и модели, которые работают на растворах, поставляемых в баллонах. Но в данном случае отмечаются жесткие условия хранения, соблюдения которых требует водород на авто. Отзывы с критикой отдельно отмечают модернизированные машины, работавшие на традиционных двигателях. Дело в том, что интеграция водородных установок зачастую приводит к быстрому износу ближайших узлов и деталей.

Сравнение с альтернативными технологиями

Как отмечают специалисты, рано или поздно в мировом автопроме будут преобладать технологии, соответствующие высоким нормам экологической безопасности. Наряду с водородными концептами, на эту роль претендуют электромобили, различные гибриды, модели, работающие на жидком азоте и т. д. Но, в отличие от перечисленных концепций, тот же HHO-генератор водорода на авто является наиболее простым в технической реализации. Если для электродвигателя разработчикам приходится зачастую создавать новую конструкцию в пространстве с двигателем, то внедрение водородного реактора под силу любой современной автомастерской. Другое дело, что генератор нельзя рассматривать как самый лучший пример использования альтернативного топлива для транспорта.

Заключение

Водород в качестве источника для снабжения силовой установки транспорта использовали еще на заре появления первых автомобилей. Однако высокая производительность классических двигателей внутреннего сгорания затмила разработки такого рода. Собственно, и в наши дни по целому ряду параметров авто на водороде не способны конкурировать с привычными моделями. Актуальность же данного направления вызвана отсутствием загрязняющих атмосферу веществ. Есть и определенные преимущества в других нюансах эксплуатации, но они не являются принципиальными для производителей. Если же говорить о жертвах, на которые придется идти создателям водородных автомобилей, то они, скорее всего, ограничатся скромной мощностью и внесением конструкционных элементов, которые могут повлиять на эргономику.

fb.ru

Как сделать водородный генератор для дома своими руками

Мы привыкли считать самым доступным видом топлива природный газ, позволяющий существенно сократить расходы. Но оказывается, у него есть достойная альтернатива — водород, получаемый при расщеплении воды. Исходное вещество для выработки этого топлива мы получаем вообще бесплатно. А если еще и водородный генератор своими руками сделать, экономический эффект будет просто потрясающим. Так ведь?

Мы готовы поделиться с вами ценной информацией о вариантах и правилах сборки технической установки, предназначенной для производства водорода. Изучение представленной вашему вниманию статьи станет гарантией изготовления безотказно действующего прибора.

Желающим собственноручно соорудить генератор дешевого, но весьма продуктивного горючего мы предлагаем обстоятельно изложенную инструкцию. Приводим рекомендации по грамотной эксплуатации. В качестве информативных дополнений, наглядно объясняющих принцип действия, использованы фото-приложения и видео об одном из вариантов сборки генератора.

Содержание статьи:

Методы получения водорода

На уроках химии средней школы когда-то давались пояснения на тот счёт, как получить водород из обычной воды, вытекающей из под крана. Есть в химической сфере такое понятие – электролиз. Именно благодаря электролизу имеется возможность получать водород.

Простейшая водородная установка представляет собой некую ёмкость, заполненную водой. Под слоем воды размещаются два пластинчатых электрода. К ним подводится электрический ток. Так как вода является отличным проводником электрического тока, между пластинами устанавливается контакт с малым сопротивлением.

Проходящий сквозь малое водяное сопротивление ток способствует образованию химической реакции, в результате которой образуется водород.

Схема экспериментальной водородной установки, которая в прежние времена изучалась в программе средней школы на уроках химии. Как выясняется, для практики современных житейских потребностей уроки те не были лишними

Казалось бы, всё просто и остаётся совсем немного – собрать образовавшийся водород, чтобы применить его в качестве энергетика. Но в химии никогда не обходится без тонких деталей. Так и здесь: если водород соединяется с кислородом, при определённой концентрации образуется взрывоопасная смесь. Этот момент является одним из критичных явлений, ограничивающих возможности построения достаточно мощных домашних станций.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.

Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.

Аппарат генерации водорода, спроектированный по схеме Брауна. По всем расчётам эта установка вполне должна обеспечить домашнее хозяйство теплом и светом. Другой вопрос – какие габариты и мощности позволят это сделать (+)

Схема генератора Брауна, кроме всего прочего, предусматривает наличие водяного затвора и обратного клапана. За счёт этих элементов организуется защита установки от обратного хода водорода. По такой схеме теоретически не исключается сборка водородной установки, к примеру, для организации отопления загородного дома.

Водородное отопление в доме

Собрать генератор водорода для эффективного отопления дома – затея, может быть не фантастическая, но явно крайне нерентабельная. Для того чтобы получить необходимый объём водорода под домашнюю котельную, потребуется не только мощная электролизная установка, но также значительный объём электрической энергии.

Компенсация затраченного электричества полученным в домашних условиях водородом видится процессом нерациональным.

Реально действующий водородный генератор домашнего назначения. Единственное, что огорчает – это всего лишь экспериментальный вариант, способный разве что показать, как из искры возникает пламя

Тем не менее, попытки решить задачу, как сделать водородный генератор для дома своими руками, не прекращаются. И вот пример одного из пыточных вариантов:

  1. Подготавливается герметичная надёжная ёмкость.
  2. Делаются трубчатые или пластинчатые электроды.
  3. Собирается схема управления рабочим напряжением и током.
  4. Делаются дополнительные модули для рабочей станции.
  5. Подбираются аксессуары (шланги, провода, крепёж).

Естественно, потребуется инструментальный набор, включая специальное оборудование, например, осциллограф и частотомер. Укомплектовавшись всем необходимым, можно приступать непосредственно к изготовлению водородной отопительной установки для дома.

Реализация проекта своими руками

Изначально потребуется сделать ячейку генерации водорода. Топливная ячейка имеет габаритные размеры чуть меньше внутренних размеров длины и ширины корпуса генератора. По высоте размер блока с электродами составляет 2/3 высоты основного корпуса.

Ячейку можно сделать из текстолита или оргстекла (толщина стенки 5-7 мм). Для этого нарезаются по размерам пять текстолитовых пластин. Из них склеивается (эпоксидным клеем) прямоугольник, нижняя часть которого остаётся открытой.

Примерно такие пластины из органического стекла образуют корпус топливной ячейки водородного генератора. Правда, здесь показан несколько иной вариант инженерной мысли – под сборку и скрепление винтами

На верхней стороне прямоугольника высверливаются нужное количество мелких отверстий под хвостовики электродных пластин, одно мелкое отверстие для датчика уровня, плюс одно отверстие диаметром 10-15 мм для выхода водорода.

Внутри прямоугольника размещаются платины электродов, контактные хвостовики которых выводят через отверстия верхней пластины за пределы ячейки. Устанавливается датчик уровня воды на отметке 80% заполнения ячейки. Все переходы в текстолитовой пластине (кроме выхода водорода) заливают эпоксидным клеем.

Особенность конструкции модулей изображенного на фото генератора – цилиндрическая форма исполнения. Также по-иному исполнены электроды этого миниатюрного источника энергии

Отверстие выхода водорода нужно оснастить штуцером – закрепить его механически, применяя уплотнение или же вклеить. Собранная ячейка генерации водорода размещается внутри  главного корпуса устройства и по верхнему периметру тщательно герметизируется (опять же можно применить эпоксидную смолу).

Таким был выбран корпус генератора водорода для очередного экспериментального проекта. Привлекает простая идея, но вряд ли этот вариант подойдёт для мощной станции, предназначенной под нагрев помещений частного дома

Но перед тем как заложить ячейку внутрь, корпус генератора нужно подготовить:

  • сделать подвод для воды в области днища;
  • изготовить верхнюю крышку с крепежом;
  • подобрать надёжный уплотнительный материал;
  • разместить на крышке электрический клеммник;
  • разместить на крышке водородный коллектор.

В результате должен получиться частично готовый к действию водородный генератор после того, как:

  1. Топливная ячейка загружена в корпус.
  2. Электроды подключены на клеммнике крышки.
  3. Штуцер выхода водорода соединён с водородным коллектором.
  4. Крышка установлена на корпус через уплотнитель и закреплена.

Останется только подключить воду и дополнительные модули.

Дополнения к водородному генератору

Самодельное устройство для получения водорода необходимо дополнить вспомогательными модулями. Например, модулем подачи воды, который функционально объединяется с датчиком уровня, установленным внутри генератора. В простом виде такой модуль представлен водяным насосом и контроллером управления. Насос управляется контроллером по сигналу датчика, в зависимости от уровня воды внутри топливной ячейки.

Дополнительные конструктивные элементы, которые требуется включать в конструкцию любой водородной станции и даже экспериментальной. Без устройств автоматики, контроля и защиты водородный генератор эксплуатировать нельзя

По сути, желательно также иметь устройство, регулирующее частоту электрического тока и уровень напряжения, подаваемых на клеммы рабочих электродов топливной ячейки. Как минимум, электрический модуль должен оснащаться стабилизатором напряжения и защитой от перегрузки по току.

Водородный коллектор, в простейшем его виде, выглядит как трубка, где размещается вентиль, манометр, обратный клапан. От коллектора забор водорода осуществляется через обратный клапан и фактически уже может подаваться к потребителю.

Водородный коллектор и манометрический измерительный прибор – неотъемлемые детали водородной установки, благодаря которым обеспечивается распределение газа и контроль давления

Но на практике всё несколько сложнее. Водород — взрывоопасный газ, имеющий высокую температуру сгорания. Поэтому просто взять и закачать водород в систему отопительного котла в качестве топлива – так сделать не получится.

Критерии качества установки

Собрать качественную эффективную и продуктивную установку в домашних условиях крайне сложно. К примеру, если даже взять в расчёт такой критерий, как металл, из которого делаются электродные пластины или трубки, уже есть риск столкнуться с проблемами.

Долговечность электродов зависит от вида металла и его свойств. Можно, конечно, использовать ту же самую нержавейку, но продолжительность жизни таких элементов будет недолгой.

Некая пародия электродных пластин для генератора водорода. Взяты пластины от обычного переменного конденсатора, которые сделаны из алюминия. Таких электродов хватит ровно на полчаса работы даже в составе малой экспериментальной системы

Существенную роль играют также монтажные размеры. Необходимы расчёты с высокой точностью по отношению к требуемой мощности, качеству воды и прочим параметрам. Так, если величина зазора между рабочими электродами окажется вне расчётного значения, водородный генератор может не функционировать вовсе. В худшем случае мощность, на которую делался расчёт, окажется в несколько раз меньшей.

Даже сечение провода, соединяющего электроды с источником питания, имеет значение в устройстве генератора водорода. Правда, здесь дело касается безопасной эксплуатации устройства. Тем не менее, следует учитывать и эту деталь конструкции в домашнем исполнении.

Возвращаясь к безопасной эксплуатации системы, следует также не забывать о внедрении в конструкцию так называемого водяного затвора, препятствующего обратному движению газа.

Несмотря на довольно внушительное число разработок самодельных генераторов водорода, реально эффективного варианта пока нет. Все модели уступают заводскому оборудованию

Генератор промышленного изготовления

На уровне промышленного производства технологии изготовления водородных генераторов бытового назначения постепенно осваиваются и развиваются. Как правило, выпускаются энергетические станции домашнего применения, мощность которых не превышает 1 кВт.

Такой аппарат рассчитан на выработку водородного топлива в режиме постоянного функционирования не более чем в течение 8 часов. Главное их предназначение – энергоснабжение отопительных систем.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.

Пример реально действующей промышленно изготовленной станции мощностью до 5 кВт. Подобные установки в перспективе планируется делать под оснащение коттеджей и кондоминиумов

Российская промышленность тоже начала заниматься этим перспективным видом добычи топлива. В частности, «Норильский никель» осваивает технологии производства водородных установок, в том числе бытовых. Планируется использовать самые разные типы топливных элементов в процессе разработки и производства:

  • протонно-обменные мембранные;
  • ортофосфорно-кислотные;
  • протонно-обменные метанольные;
  • щелочные;
  • твердотельные оксидные.

Между тем процесс электролиза является обратимым. Этот факт говорит о том, что есть возможность получать уже нагретую воду без сжигания водорода.

Кажется, это очередная идея, ухватившись за которую можно запускать новый виток страстей, связанных с бесплатной добычей топлива для домашнего котла.

Полезное видео по теме

Экспериментируя дома с самодельными моделями, нужно приготовиться к самым неожиданным результатам, но негативный опыт — это тоже опыт:

Водородные генераторы для дома, изготовленные своими руками, — это пока что проект, существующий на уровне одной идеи. Практически реализованных проектов водородных генераторов своими руками нет, а те, что позиционируются в сети – воображения их авторов или же чисто теоретические варианты. Так что остаётся рассчитывать только на промышленный дорогостоящий продукт, который обещает появиться уже в ближайшем будущем.

sovet-ingenera.com

Водородные станции, генераторы водорода | ЭкоГазСистем

Процесс начинается с подготовки воды. Для процесса электролиза требуется так называемая деионизованная вода (также называемая обессоленная, деминерализованная). Это совершенно чистая вода, очищенная от механических и химических загрязнений. Обычная водопроводная вода поступает в "Блок водоподготовки" по трубопроводу "Тр-4". Вода последовательно проходит несколько стадий очистки: механический фильтр, ионообменные смолы, обратный осмос. Насосный блок "Н-1" (включает два насоса – основной и резервный) подаёт готовую деионизованную воду в блок сепарации, через который вода попадает в "Блок электролиза".

"Блок электропитания" понижает сетевое напряжение и преобразует переменный ток в постоянный, который необходим для электролизера. Кроме того, блок обеспечивает электропитание для остального оборудования водородной установки.

В "Блоке электролиза" вода под действием постоянного электрического тока распадается в электролизере "Элз-1" на составляющие ее водород и кислород. Отметим, что деионизованная вода практически не проводит электрический ток. Поэтому для придания воде проводящих свойств в неё добавляют гидроксид калия (KOH). То есть в электролизере циркулирует не чистая вода, а электролит в виде 30%-го раствора KOH в воде. Кроме того, в электролит добавляют пентоксид ванадия (V₂O₅) для снижения поляризации электродов, что повышает эффективность процесса. Выделяющиеся газы (водород и кислород) далее идут по отдельным трактам. Далее рассматривается водородный тракт, кислородный тракт аналогичен водородному.

Водород из электролизера поступает в "Блок сепарации" по трубопроводу "Тр-1" в виде смеси с электролитом. Для выделения водорода от жидкости служит газожидкостный сепаратор "С-1". Сепаратор представляет собой сосуд, в который снизу подаётся электролит. Пузырьки газа выделяются из электролита, газ собирается в верхней части сосуда и уходит в трубопровод. Электролит сливается из сосуда и возвращается в блок электролиза по отдельному трубопроводу (на схеме не показан).

Водород на этом этапе содержит примеси щелочи. Для очистки от щелочи служит скруббер (промыватель) "Ск-1". Промыватель – это сосуд, в который снизу подаётся газ, а сверху из разбрызгивателя подаётся деионизованная вода. Капли воды падают вниз, очищая (промывая) встречный поток газа от капель щелочи. В верхней части сосуда установлен коалесцентный фильтр (пакет из мелкой металлической сетки). Мельчайшие капельки щелочи (туман) конденсируются в этом пакете и стекают вниз. Таким образом водород практически полностью очищается от следов щелочи. Далее вода по отдельному трубопроводу (на схеме не показан) поступает в сепаратор "С-1", а оттуда – в блок электролиза.

На данном этапе водород насыщен водяным паром и имеет довольно высокую температуру (порядка 50°С. Для его удаления служит конденсатор "К-1". Конденсатор – это теплообменник, в котором газ охлаждается хладоносителем поступающим от "Рефрижератора". Рефрижератор может быть часть оборудования водородной станции, но возможен вариант, когда хладоноситель подаётся от внешней системы охлаждения. Водяной пар конденсируется в конденсаторе после чего отводится из системы с помощью конденсатоотводчика "Ко-1". Водород, полученный на этом этапе называется "сырой", так он все еще содержит примеси воды (точка росы не ниже +3°С) и кислорода (на уровне 0,1-0,5%). Для дальнейшей очистки водород по трубопроводу "Тр-2" подаётся в "Блок очистки". Заметим, что кислород, в случае, если он не нужен потребителю, на аналогичном этапе по трубопроводу "Тр-5" сбрасывается в атмосферу.

В "Блоке очистки" водород сначала поступает в реактор каталитической очистки "Кт-1". Реактор представляет собой сосуд, заполненный мелкими гранулами катализатора на основе благородных металлов (платина, палладий). В присутствии катализатора примеси кислорода активно реагируют с водородом, обращаясь в воду. Таким образом водород практически полностью очищается от кислорода (содержание кислорода порядка 1-5 ppmv). Далее водород подаётся в осушитель "Осш-1". Осушитель действует на принципе короткоцикловой адсорбции (КЦА). В нем два попеременно работающий сосуда-адсорбера, заполненных специальным поглотителем (адсорбентом). Адсорбент поглощает влагу из газа. Сосуды-адсорберы работают попеременно – один находится в рабочем цикле, другой – в цикле регенерации. Таким образом водород осушается до точки росы -75°С, после чего подаётся потребителю.

 

Замечание по терминологии. В отечественной традиции используется термин "установка по производству водорода". Наравне с этим используется термин "генератор водорода", который является калькой с английского языка. Под генератором водорода обычно понимают установку, в состав которой входят: электролизер, блок сепарации, блок очистки водорода. Термином "водородная станция" обычно обозначают здание или автономный блок-контейнер, в котором размещены генератор водорода и вспомогательные агрегаты, такие как блок водоподготовки, блок электропитания, система охлаждения и прочее. 

gasonsite.ru

Двигатель внутреннего сгорания на водороде: устройство и принцип работы

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

По этой причине автопроизводители постоянно работают над тем, чтобы получить «безвредный» для окружающей среды и относительно дешевый в производстве силовой агрегат, который при этом не будет нуждаться в дорогом топливе.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

Читайте в этой статье

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего  для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

Прежде всего, горение водорода по сравнению с нефтяным топливом отличается тем, что водород сгорает намного быстрее. В обычном двигателе смесь бензина или солярки с воздухом заполняет камеру сгорания тогда, когда поршень почти поднялся в ВМТ (верхняя мертвая точка), затем топливо какое-то время горит и уже после этого газы давят на поршень.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Однако чтобы этого добиться, на автомобиле должна стоять установка для электролиза (электролизер), которая и будет отделять водород от воды, чтобы затем получить нужную реакцию с кислородом в камере сгорания. На практике установка получается сложной и дорогой, а создать такую закрытую систему довольно сложно.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Также даже небольшая утечка водорода может стать причиной того, что топливо попадет на разогретый выпускной коллектор, после чего может произойти взрыв или пожар. Чтобы этого не случилось, для работы на водороде чаще задействуют  роторные двигатели. Такой тип ДВС больше подходит для этой задачи, так как их конструкция предполагает увеличенное расстояние между впускным и выпускным коллектором.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды  на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода  на полном баке водорода составляет около 300  км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы  и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Также не особенно большим является и сам выбор водородных  легковых авто. Кроме Honda Clarity можно разве что упомянуть Mazda RX8 Hydrogen, а также BMW Hydrogen 7. Фактически это автомобили-гибриды, которые работают на жидком водороде и бензине. Еще можно добавить в список Mercedes GLC F-Cell. Эта модель имеет возможность подзарядки от бытовой сети электропитания и позволяет пройти до 500 км. на одном заряде.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Рекомендуем также прочитать статью о том, что такое двигатель GDI. Из этой статьи вы узнаете об особенностях, принципах работы, а также преимуществах и недостатках моторов данного типа.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород  весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для  авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Что касается недостатков и сложностей, машина с водородным двигателем сегодня имеет высокую стоимость, а также могут возникать проблемы с заправкой топливом по причине недостаточного количества заправочных станций. Не стоит забывать и о том, что также не просто найти специалистов, которые способны качественно и профессионально обслужить водородную силовую установку. При этом обслуживание будет достаточно затратным.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Читайте также

  • GDI двигатель: что это такое?

    Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.
  • TDI двигатель: что это такое?

    Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.

krutimotor.ru

электролизер своими руками, чертежи, получение в домашних условиях, для автомобиля

Водородный генератор может отличаться по размерам и качеству материалов, которые применялись при его изготовлении Раньше загородные дома можно было отапливать только одним способом – растапливали печь дровами или углем. Сегодня же для отопления частного дома используют разнообразное топливо: дизель, мазут, природный газ, электричество. Однако с ростом цен на топливо многие владельцы домов стараются найти более дешевый способ отопления. Одним из них является обычная вода, которую использует водородный генератор для образования такого топлива, как водород. Водород является неиссякаемым источником энергии. Его можно применять не только для обогрева помещений, но и для автомобиля.

Генератор водорода: устройство и его принцип работы

Использовать водород для обогрева жилых домов очень выгодно, так как он обладает высокой теплотворной способностью и при этом не происходит выделения вредных веществ. Однако в чистом виде добыча водорода невозможна, большое содержание его находится в реках, морях и океанах. Организм человека даже состоит из 63% водорода.

Чистый водород можно получать из многих различных химических соединений, например, водорода и кислорода. Самый известный способ получения водорода – это электролиз воды.

Чтобы получить чистый водород необходимо воду расщепить на два атома (НН) водорода и атом кислорода (О). Это и есть принцип работы водяного генератора: получение водорода с помощью электролиза. Газ, который выделяется при этом, назвали в честь великого физика Брауна и он имеет формулу ННО. Такой газ при сгорании не образует вредных веществ и является экологически чистым продуктом. Однако смесь водорода с кислородом образует в итоге горючий газ, который является взрывоопасным. Поэтому используя в домашних условиях электролизер, нужно соблюдать дополнительные меры безопасности.

Перед тем как приступить к использованию генератора водорода, нужно тщательно ознакомиться с инструкцией

Водяной двигатель имеет такое устройство:

  • Генератор водородного типа, где и происходит электролиз;
  • Горелка, она устанавливается в самой топке;
  • Котел, он выполняет функцию теплообменника.

На производство такого газа, как браун, используется в четыре раза меньше энергии, чем выделяется при его сгорании. Электричество при этом расходуется очень экономно, а топливо, которое ему необходимо – это обычная вода.

Водородный генератор: его достоинства и недостатки

Сегодня электролизёр является таким же привычным устройством, как например, плазменный резак или ацетиленовый электрогенератор. Такая электролизная установка, работающая на воде (печка), стала достаточно популярной, ее применяют для обогрева частных домов, а так же устанавливают на мотоцикл или авто для экономии топлива.

Водородный генератор является экологически чистым топливом, единственным отходом, который он вырабатывает, есть вода. Она выделяется в газообразном состоянии и известна нам, как водяной пар. А он, в свою очередь, никакого негативного влияния на окружающую среду не оказывает.

Такое устройство обладает и другими положительными достоинствами, но так же и недостатками. Самый важный недостаток – это его взрывоопасность. Однако соблюдая все предосторожности и правила безопасности, можно избежать негативных последствий.

Водородный реактор имеет свои преимущества:

  • Работает на воде;
  • Экономит электричество;
  • Является экологически чистым;
  • Высокий КПД;
  • Простота обслуживания.

Такой прибор HHO можно приобрести в готовом виде в специализированном магазине, стоит он будет, конечно совсем не дешево. Однако можно сделать его и своими руками из доступных деталей, сэкономив при этом приличную сумму. Однако ему нужна защита от воды и отдельный домик для хранения.

Самодельный водородный генератор: пошаговая инструкция

Изготовление водородного генератора можно осуществит в домашних условиях, но для этого будут нужны чертежи и пошаговая инструкция всего процесса. Схема электролизера очень проста (ее можно смотреть в интернете), поэтому каких-либо специфических материалов практически не понадобится.

Для создания самодельного генератора водорода нам понадобятся некоторые инструменты и материалы: пластиковый контейнер или полиэтиленовая канистра с крышкой, прозрачная трубка длиной 1м, с диаметром 8 мм, болты, гайки, силиконовый герметик, лист нержавейки, 3 штуцера, обратный клапан, фильтр, ножовка по металлу, гаечные ключи и нож.

Собрав все это, можно приступать к его изготовлению. Сборка осуществляется по чертежам, которые можно найти в интернете или же заказать у специалиста.

Инструкция изготовления:

  • Из листа нержавейки вырезаем 16 одинаковых пластин.
  • Сверлим отверстие в одном из углов. Угол должен быть одинаковым у всех 16.
  • Противоположный угол обязательно спиливаем.
  • Устанавливаем пластины поочередно на приготовленные болты, изолируя их шайбами и полиэтиленовыми трубками. Они не должны контактировать между собой.
  • Стягиваем всю конструкцию гайками, получается батарея.
  • Крепим данную конструкцию в пластиковую емкость, отверстия смазать герметиком.
  • Просверливаем отверстия в крышке, обрабатываем их так же силиконом, затем вставляем штуцера.

Чтобы сделать самодельный водородный генератор, нужно предварительно посмотреть обучающее видео и изучить советы профессионалов

Самодельный кислородный гидролизер готов. Теперь его только нужно проверить на работоспособность. Для этого нужно заполнить емкость водой до болтов крепления и закрыть ее крышкой. Одеваем на один из трех штуцеров шланг из полиэтилена, а второй его коней опускаем в отдельную емкость, заполненную так же водой. К болтам нужно подключить электричество, если на поверхности появились пузырьки, значит, генератор работает и выделяет водород. После такого подключения и проверки, воду сливаем, а затем заливаем в емкость готовый щелочной электролит, чтобы получить больше выделяемого газа.

Электролизер для автомобиля: виды катализаторов

Водородный генератор, при установке, способен снизить расход топлива у легковых или грузовых машин, мотоциклов, а так же сократит выброс в атмосферу вредных веществ. На сегодняшний день, такой генератор для автомобиля приобретает популярность. Процесс электролиза в авто происходит благодаря применению специального катализатора. В конечном итоге получается оксиводород (ННО), который смешиваясь с топливом, что и способствует его полному сгоранию.

Благодаря такой установке можно сэкономить горючее на 50%. А так же, установив данную конструкцию в свой автомобиль, вы не только уменьшите токсичные выхлопы, но и: увеличите эксплуатационный срок двигателя, снизите температуру самого мотора и при этом повысите мощность всего силового агрегата.

Все процессы, которые происходят в водородном генераторе, происходят автоматически по специальной программе. Эта программа вшита в компьютер, который и управляет всем автомобилем. Машина без него попросту не будет работать.

Существует несколько видов катализаторов:

  • Цилиндрические;
  • С открытыми пластинами или их еще называют сухими;
  • С раздельными ячейками.

Самостоятельно водородный генератор можно изготовить, однако специалисты делать этого не рекомендуют, так как это устройство очень сложное по конструкции и при этом еще не безопасно. Если вы все же решили сделать его сами, тогда лучше всего подойдет для этих целей аккумулятор, вышедший из строя.

Авто на воде своими руками: чертежи (видео)

В настоящее время, водородный генератор – это не просто плод воображения, а действительно реальное устройство, которое поможет эффективно обогреть ваш дом, а так же снизит расходы бензина для автомобиля. Так же водород является безопасным для атмосферы.

Добавить комментарий

teploclass.ru

Как работает водородный двигатель в автомобиле?

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

Чуть позже, во времена блокады Ленинграда, когда бензин был дефицитным продуктом, а водород имелся в достаточно большом количестве, техник Борис Шелищ предложил использовать для работы заградительных аэростатов воздушно-водородную смесь. После этого на водородное питание перевели все ДВС лебедок аэростатов, а общее число работающих на водороде машин достигало 600 единиц.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Интересный факт! Водород – самый распространенный элемент во Вселенной, но найти его в чистом виде на нашей планете будет очень непросто.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется моторное масло, а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).

В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

А знаете ли вы? Специалисты компании Toyota начали работать с технологией топливных элементов еще 20 лет назад. Примерно тогда стартовал и проект гибридного автомобиля Prius.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых, высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых, даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Интересно знать! Генератор Power Exporter 9000 (может входить в комплектацию Honda Clarity) способен питать всю домашнюю технику почти целую неделю.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых, ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых, массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.

Была ли эта статья полезна?Да Нет

auto.today


© 2005-2018, Национальный Экспертный Совет по Качеству.

Высокое качество системы сертификации Центрстройэкспертиза-Тест подтверждено ВОК



Ассоциация СРО Единство