Как открыть производство светодиодных ламп? Производство светодиодов
Технология производства светодиодов
В докладе на открытии 26 конференции Международной Комиссии по Освещению в Пекине было отмечено, что общее направление работы светотехнической научной общественности должно быть направлено на сокращение энергопотребления и уменьшение загрязнения окружающей среды. То есть речь идет не об уменьшении освещённости, а о более рациональном и эффективном использовании освещения. Одним из наиболее перспективных шагов на этом пути, является разработка и использование энергоэкономичных источников света – светодиодов.
Светодиод – полупроводниковый диод, излучающий свет при прохождении тока через p-n–переход. Чтобы p-n-переход излучал свет, должны выполняться следующие два условия. Во-первых, ширина запрещённой зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона, а во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой. Для этого полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу. Реально, чтобы их соблюсти, одного р-n-перехода в кристалле недостаточно. Приходится изготавливать многослойные полупроводниковые структуры. Их называют гетероструктуры (именно за изучение гетероструктур академик Алферов получил Нобелевскую премию). Это послужило новым этапом в развитии технологий изготовления светодиодов.
Производство светоизлучающих диодов сталкивается с некоторыми трудностями. Поскольку создание светодиодов - это динамично развивающаяся отрасль светотехнической промышленности, то сложившихся законов и правил их применения пока не существует. Нет нормативной документации, относящейся к процессу производства и использования светодиодов. Каждое крупное производство старается найти свои критерии отбора продукции, но, к сожалению, некаких международных соглашений не существует. Хотя в этом направлении в последнее время ведется активная работа и достигнуты хорошие результаты, надо понимать, что создание единых требований к светодиодной технике – дело не одного года. Чтобы понять, в чем сложность создания подобной документации, следует ознакомиться с технологией производства.
Рассмотрим поэтапно процесс создания светодиодов.
1) Выращивание кристалла.Здесь главную роль играет такой процесс, как металлоорганическая эпитаксия. Эпитаксия – это ориентированный рост одного кристалла на поверхности другого (подложки). Эпитаксиальный рост полупроводников (а светодиод – это именно полупроводник) осуществляется методом термического разложения (пиролиза) металлорганических соединений, содержащих необходимые химические элементы. Для такого процесса необходимы особо чистые газы, что предусмотрено в современных установках. Толщины выращиваемых слоев тщательно контролируются. Важно обеспечить однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста доходит до полутора миллионов евро. А процесс наладки получения высококачественных материалов для будущих светодиодов занимает несколько лет.
2) Создание чипа.На этом этапе имеют место такие процессы, как травление, создание контактов, резка. Весь этот комплекс получил название «планарная обработка пленок». Пленка, выращенная на одной подложке, разделяется на несколько тысяч чипов.
3) Биннирование.Биннирование (сортировка чипов) – особенно важный процесс производства светодиодов, о котором несправедливо часто забывают упоминать в литературе. Дело в том, что при производстве любой продукции должны соблюдаться некие критерии отбора. Но на вышеописанных стадиях производства светодиода невозможно добиться абсолютного сходства изделий по его характеристикам. Изготовленные чипы изначально имеют характеристики, различающиеся в некотором диапазоне. Чипы сортируют на группы (бины). В каждой группе определённый параметр варьируется в определённых пределах.
Сортировка происходит по:
- длине волны максимума излучения;
- напряжению;
- световому потоку (или осевой силе света) и т. д.
Биннирование, как способ градации светодиодной продукции, находит применение на производстве и, следовательно, в наименовании поставляемой продукции. Оба эти факта делают применение светодиодов доступным для широкого круга пользователей.
4) Создание светодиода.Создание непосредственно светодиода – это заключительный этап технологической цепочки. Создается корпус будущего источника света, монтируются выводы, подбирается люминофор (если он необходим). Но особо стоит отметить такую важную часть, как оптическую систему (а именно, изготовление линз). Линзы для светодиодов изготавливают из эпоксидной смолы, силикона или пластика. К ним предъявляется широкий спектр требований, т.к. оптическая система светодиода играет большую роль (направляет световой поток светодиода в нужный телесный угол).
Линзы должны:
- быть максимально прозрачными;
- пропускать свет во всем оптическом диапазоне;
- обладать хорошей клейкостью материала к материалу печатной платы;
- быть температура стабильными;
- обладать высоким сроком службы (что характеризуется к воздействию излучения кристалла и химическому воздействию люминофора, если таковой применен).
Благодаря большому количеству положительных качеств (малой потребляемой мощностью, отсутствию ртути, низкому напряжению питания, высокой надежности, малым габаритам и т.д.), на основе светодиодов создаются разнообразные и высококачественные осветительные светодиодные приборы. Можно долго перечислять различные типы светодиодных светильников: это и прожекторы, и линейные светодиодные светильники, и светильники общего или специального назначения. Однозначно можно сказать, что светодиоды – это динамично развивающиеся источники света. А технология производства светодиодов – сфера деятельности высококлассных мировых специалистов, способных достигать все более высоких результатов.
www.glcompany.ru
Крупнейшие мировые производители светодиодов
Мы подготовили небольшой обзор по крупнейшим производителям светодиодов, чья продукция широко используется не только в светодиодных светильниках, представленных в ассортименте нашей компании, но и в автомобильной промышленности, бытовой технике и гаджетах.
NICHIA
С самого начала своей деятельности компания занималась поисками яркого светоизлучающего материала. Результатом упорного труда и разработок стал сверхъяркий синий светодиод, завоевавший популярность во всем мире. Сегодня в ассортименте Nichia представлены лазерные и светоизлучающие диоды, химически чистые реактивы для фармацевтической и пищевой промышленности, люминофоры для ламп, плазменных панелей и рентгеновских установок, материалы для аккумуляторных батарей и многое другое.
Из последних разработок компании можно выделить высокомощный зеленый лазерный диод для дисплеев лазерных ТВ, синие и зеленые полупроводниковые лазерные диоды для подсветки панели управления в автомобиле. Последние месяцы компания ведет судебные разбирательства с Everlight касательно патента на светодиоды, изготовленные с применением люминофора ИАГ.
CREE
В 1989 г. компания представила на рынке свой первый синий светодиод XLamp. Это были первые в своем классе светодиоды, которые использовали для общего освещения в уличных, потолочных и настольных светильниках.
Сегодня компания выпускает светодиодные светильники для внутреннего и наружного освещения, различные комплектующие для светильников, а также светодиодные лампы.
Из последних новостей: компания подписала соглашение о перекрестной лицензии с Epistar на производство светодиодных чипов, а также представила новую светодиодную лампу, отличающуюся более длительным сроком службы и низким энергопотреблением.
По данным 2014 г. доход CREE увеличился на 19% и составил рекордные $1,65 млрд., из которых доход от светодиодной продукции (чипы, компоненты) составил $833,7 млн., доход от продажи светодиодных систем и ламп составил $706, 4 млн.
OSRAM
В 1919 г. в результате объединения нескольких производств OSRAM стал самостоятельной компанией и крупнейшим производителем ламп накаливания в Германии. Сегодня OSRAM входит в состав концерна Siemens AG.
Компания выпускает светодиоды, светодиодные модули, светодиодные светильники для внутреннего и наружного освещения, пускорегулирующие аппараты, лампы (галогенные, люминесцентные, светодиодные, специальные), системы управления освещением.
На территории РФ работает завод OSRAM, ежегодно выпускающий 88 миллионов ламп.
Доход компании в 2014 г. составил 5,1 млрд.евро, большая часть дохода приходится на классические лампы, специальное освещение (световые решения для автомобилей, сцен) и светодиоды.
Samsung LED
В 1995 г. компания Samsung наладила производство светодиодов. Изначально светодиоды устанавливались на бытовой технике, холодильниках, телевизорах, выпускаемых под маркой Samsung.
В 2009 г. в качестве совместного предприятия Samsung Electronics и Samsung Electro-Mechanics было создано подразделение Samsung LED. Новая компания была создана с целью завоевать ведущие позиции в мире по производству компонентов для дисплеев и световой продукции.
Сегодня Samsung LED производит светодиодные компоненты, источники света, драйверы, светодиоды для автомобилей и дисплеев. Производственные площадки находятся в Китае и Южной Корее, при этом у Samsung широкая сеть дистрибьюторов по всему миру.
Seoul Semiconductor
В 1992 г. компания наладила полный цикл производства светодиодов: выращивание кристаллов, разработка и производство люминофоров, изготовление корпусов для светодиодов.
Seoul Semiconductor выпускает светодиоды «Acrich», рассчитанные на использование в светильниках для уличного и внутреннего освещения, бескорпусные светодиоды «Wicop», отличающиеся интенсивным световым потоком, мощные светодиоды «Z Power LED», неполярные светодиоды «nPola», которые в 5 раз ярче обычных светодиодов.
trialight.ru
Производство светодиодных ламп - оборудование завода
5 лет назад президентом РФ был подписан законопроект, согласно которому с 2014 г в стране полностью будет остановлено изготовление так привычных всем ламп накаливания.
Именно поэтому сегодня многие специалисты прогнозируют небывалый спрос на энергосберегающие лампы. А там, где есть спрос, будет и предложение. Многие предприимчивые бизнесмены уже давно задумались об открытии собственных заводов по изготовлению данного вида продукции. Возможно, совсем скоро светодиодные лампы российского производства будут не менее популярны у населения, нежели китайская продукция, заполонившая на данный момент весь мировой рынок.
Наверняка, вы подумаете, что подобное высокотехнологичное производство нуждается в немалых инвестициях. И вы, в принципе, окажетесь правы. Наладить выпуск светодиодных ламп не получится с ограниченным бюджетом. Это вас не останавливает? Тогда давайте рассмотрим основные статьи расходов и примерный алгоритм действий.
Процесс изготовления светодиодных ламп
Производство данного вида продукции — процесс довольно трудоемкий, требующий соблюдения множества правил. Вся технология производства светодиодных ламп с нуля условно может быть разделена на несколько этапов:
Изготовление чипов на основе кристаллов
Тончайший слой искусственно выращенных кристаллов (пленка) специальным образом разделяется на тысячи отдельных чипов.
Сортировка чипов (биннирование)
Чипы одного слоя однородными не являются. Их отличают по множеству параметров, согласно которым чипы сортируются на некоторые группы (бинны).
Изготовление готовой продукции
Естественно, готовый продукт не состоит из одних лишь чипов. Основные детали здесь — корпус изделия, линзы, люминофор. Причем, именно оптические комплектующие считаются одними из самых важных деталей.
Как наладить производство
Данная ниша с каждым годом показывает приличный уровень роста, но конкуренция здесь пока еще не перенасыщена. А это лишь преумножает ваши шансы на успех.
Итак, чтобы открыть мини завод по производству светодиодных ламп, в среднем вам понадобится от $ 2-15 млн. Тут все зависит от масштабов. Более конкретная цифра будет зависеть от следующих факторов:
- регион, где планируется выпуск продукции;
- стоимость сырья;
- стоимость основного оборудования.
Окупаемость подобного предприятия по производству светодиодных ламп, как правило, равняется 2 годам. По прошествии этого времени, завод будет приносить приличный доход (15-30% с учетом налоговых выплат).
Так из чего же складывается столь большая сумма?
Оборудование для производства светодиодных ламп
Тут сразу стоит оговориться, что открыть свое производство светодиодных ламп с нуля в современных экономических условиях будет весьма проблематично. Судите сами:
- Одно только оборудование, с помощью которого выращиваются кристаллы, стоит порядка $ 5-20 млн.
- Необходим огромный штат высококвалифицированных специалистов.
- Кристаллы требуется выращивать долгие годы.
Куда менее затратным станет вариант по сборке закупаемых «на стороне» светодиодов. В данном случае нет больших сроков окупаемости, да и издержки гораздо ниже. Итак, в линию по производству готового изделия входят:
- Высокоточное оборудование для тестирования светодиодов.
- Оборудование для сборки.
- Дополнительное оборудование.
А цена оборудование для производства светодиодных ламп, по которой оно реализуется, варьируется в зависимости от производителя. В среднем, одна подобная линия будет стоить примерно $ 400 тыс — 2 млн. Вам может потребоваться до 6 линий. Самые дешевые аппараты можно закупить в Китае.
Цех по производству светодиодных ламп
Главное здесь правило — светодиоды должны изготавливаться в стерильных условиях. Естественно, добиться этого на каком-нибудь старом складе будет довольно сложно. Помимо прочего, помещение должно быть очень просторным, чтобы была возможность вместить сюда все громоздкое оборудование. Переоборудование подходящего помещения достаточной площади вам обойдется примерно в $ 20-50 тыс.
Персонал
Как вы сами понимаете, купить оборудование для производства светодиодных ламп является лишь половиной дела. Не менее важно подобрать квалифицированную рабочую силу. В зависимости от особенностей и количества линий вам понадобится помощь:
- 1 главного технолога,
- 4-7 инженеров,
- прочего персонала.
Планируете крупномасштабное производство? Тогда смело умножайте приведенные выше цифры на 2. Общие ежемесячные расходы на персонал составят $ 25-50 тыс.
Сырье для производства светодиодных ламп
Любой бизнес план производства светодиодных ламп будет включать в себя и расходы на сырье. Чтобы производить только качественную продукцию, то расходные материалы вам понадобятся только высокого качества. Кстати, чипы производят и некоторые российские компании. Заказывая отечественное сырье, можно значительно сэкономить.
Сертификация светодиодных ламп
Как было отмечено раннее, светодиоды появились на современном рынке относительно недавно. Пока на них не разработано никаких международных стандартов качества. Получается, что производитель самостоятельно разрабатывает все технические условия.
Но светодиодные лампы подлежат обязательной сертификации. Документ можно получить в сертификационном органе. В каждом регионе имеется подобное учреждение. На получение сертификата придется выложить $ 2-5 тыс.
Наладить собственное производство светодиодов — задумка весьма смелая. Но если вы найдете инвесторов, с умом подойдете к делу и наберетесь терпения, успех не заставит себя ждать.
startbusinessidea.ru
Китайская реальность Григория Потёмкина
23 Октябрь, 2010
Вы когда-нибудь думали всерьез о лампочках? Ну, вот так, чтобы сеть и подумать. Всерьез. Нет? Я тоже нет! До тех пор, пока не попал на китайский завод по производству ламп.
Но сначала — немного истории…
Одни считают, что лампочку изобрел Павел Яблочков. Другие доказывают, что ее сконструировал другой русский изобретатель — Лодыгин, третьи уверены, что изобретение лампочки принадлежит Томасу Эдисону. Кроме того, за право называться изобретателем лампочки спорят немец Генрих Гёбель, англичанин Джозеф Вильсон Сван, венгерский доктор наук Шандор Юст и еще десяток ученых прошлого века.
Но на самом деле ее изобрел В.И. Ленин. Иначе, почему она называется «Лампочка Ильича»?!
Какие лампочки горят у вас дома? Накаливания?
Вы меня извините, конечно, но это прошлый век. Даже позапрошлый. Ими пользуются только в России. Ну и еще, наверное, в Эстонии. Весь цивилизованный мир терпеливо дождался, когда перегорит последняя лампочка накаливания и вкрутил на ее место сберегающую лампочку. Атомные и гидроэлектростанции вздохнули с облегчением.
Такие энергосберегающие лампочки – дороже, но при той же яркости они потребляют в несколько раз меньше электричества, кроме того, их ресурс намного больше.
Но мы живем в современном мире. Все тут развивается чертовски быстро. И так уж получилось, что современные энергосберегающие лампочки не долго были «современными». На смену им идут лампы светодиодные. Идут быстро и безжалостно. Их преимущества очевидны. Они, опять же, потребляют в разы меньше электричества, и срок их работоспособности стремится к бесконечности.
Когда вы покупаете в магазине энергосберегающую лампу, думая, что это «нанотехнологии» и «двадцать первый век», знайте, что на самом деле – это уже устаревшая вещь без будущего, дни которой сочтены.
Однажды я попал на завод по производству светодиодных ламп. Даже не на один завод, а сразу на несколько. Посмотреть на сборку таких ламп собственными глазами было очень интересно.
Раньше светодиоды использовались в радиотехнике исключительно в качестве индикаторов и подсветки. Они практически не потребляли электричества, но при этом горели очень тускло. Со временем умные и настойчивые японцы научились «разгонять» светодиоды. И сейчас они могут светить дьявольски ярко. А трудолюбивые китайцы научились собирать бытовые и промышленные лампы из этих светодиодов.
В городе Шенчжене – электронной столице Китая – расположено более сотни фабрик по производству светодиодных ламп. Еще два года назад их не было. А сейчас — более сотни. И каждую неделю тут открываются одна-две новые фабрики.
Эти производства довольно сильно отличаются друг от друга. Тут можно найти и сверхсовременные заводы, где персонал ходит в белых халатах и масках, а можно встретить и примитивные мастерские, где лампы собираются в прямом смысле на коленках.
В производстве светодиодных ламп нет ничего запредельного. Тут нет необходимости в дорогостоящем оборудовании. Тут нужны лишь платы, светодиоды, микросхемы, паяльники и рабочие руки. Много рабочих рук.
Среднестатистическое производство светодиодных ламп выглядит так: арендованное помещение в производственном здании общей площадью от 1000 до 5000 квадратных метров. Монтажные столы, где происходит сборка ламп. Несколько десятков или сотен сотрудников. Паяльники. Олово. Канифоль. Вентиляторы. Обязательно стенд для проверки качества. Шоурум. Офис начальника производства. Кабинет директора. И склад.
Как производят «круглые» светодиодные лампы (это аналог люминисцентных ламп, которые есть в каждой школе, библиотеке, больнице).
На заранее подготовленную плату устанавливаются светодиоды.
Далее специальная и очень умная машина – «расстановщик» — за несколько секунд устанавливает десятки микросхем на вспомогательную плату, которая называется «драйвер».
Далее «драйвер» обжимают «термоусадочной» лентой, это предохраняет его от нагревания и механических повреждений.
А после этого плату со светодиодами и сам «драйвер» помещают в корпус лампы.
Корпус защелкивается, ставятся боковые заглушки, и все это пакуется в картонную коробку. Лампа готова! Можно отгружать!
Удивительно, но китайцы дают трехлетнюю гарантию на свои изделия! Европа и Америка покупает такие лампы с большим удовольствием. В основном они поставляются в госучреждения и на новые строительные объекты. Дело в том, что среднему обывателю без разницы, какой счет за электричество ему придет в конце месяца, в любом случае, это будут копейки. А вот владельцу крупного торгового центра или гостиницы на 500 номеров – разница есть. Потому что тут эта разница может исчисляться десятками тысяч долларов. Эти лампы почти не потребляют электричества и не перегорают. В этом весь изюм.
Это интересный, умный и невероятно быстроразвивающийся бизнес. Владельцы тех китайских фабрик, которые сделают все правильно с точки зрения маркетинга и сумеют подобрать талантливый персонал в отдел продаж, через год-два станут мультимиллионерами.
Поделиться с друзьями:www.realchina.ru
Выращивание светодиодов
Светодиод – полупроводниковый диод, излучающий свет при прохождении тока через p-n–переход. Чтобы p-n-переход излучал свет, должны выполняться следующие два условия. Во-первых, ширина запрещённой зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона, а во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой. Для этого полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу. Реально, чтобы их соблюсти, одного р-n-перехода в кристалле недостаточно. Приходится изготавливать многослойные полупроводниковые структуры. Их называют гетероструктуры (именно за изучение гетероструктур академик Алферов получил Нобелевскую премию). Это послужило новым этапом в развитии технологий изготовления светодиодов.
Производство светоизлучающих диодов сталкивается с некоторыми трудностями. Поскольку создание светодиодов - это динамично развивающаяся отрасль светотехнической промышленности, то сложившихся законов и правил их применения пока не существует. Нет нормативной документации, относящейся к процессу производства и использования светодиодов. Каждое крупное производство старается найти свои критерии отбора продукции, но, к сожалению, некаких международных соглашений не существует. Хотя в этом направлении в последнее время ведется активная работа и достигнуты хорошие результаты, надо понимать, что создание единых требований к светодиодной технике – дело не одного года. Чтобы понять, в чем сложность создания подобной документации, следует ознакомиться с технологией производства.
Рассмотрим поэтапно процесс выращивания светодиодов.
1) Выращивание кристалла.
Здесь главную роль играет такой процесс, как металлоорганическая эпитаксия. Эпитаксия – это ориентированный рост одного кристалла на поверхности другого (подложки). Эпитаксиальный рост полупроводников (а светодиод – это именно полупроводник) осуществляется методом термического разложения (пиролиза) металлорганических соединений, содержащих необходимые химические элементы. Для такого процесса необходимы особо чистые газы, что предусмотрено в современных установках. Толщины выращиваемых слоев тщательно контролируются. Важно обеспечить однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста доходит до полутора миллионов евро. А процесс наладки получения высококачественных материалов для будущих светодиодов занимает несколько лет.
2) Создание чипа.
На этом этапе имеют место такие процессы, как травление, создание контактов, резка. Весь этот комплекс получил название «планарная обработка пленок». Пленка, выращенная на одной подложке, разделяется на несколько тысяч чипов.
3) Биннирование.
Биннирование (сортировка чипов) – особенно важный процесс производства светодиодов, о котором несправедливо часто забывают упоминать в литературе. Дело в том, что при производстве любой продукции должны соблюдаться некие критерии отбора. Но на вышеописанных стадиях производства светодиода невозможно добиться абсолютного сходства изделий по его характеристикам. Изготовленные чипы изначально имеют характеристики, различающиеся в некотором диапазоне. Чипы сортируют на группы (бины). В каждой группе определённый параметр варьируется в определённых пределах. Сортировка происходит по:
- длине волны максимума излучения;
- напряжению;
- световому потоку (или осевой силе света) и т. д.
Биннирование, как способ градации светодиодной продукции, находит применение на производстве и, следовательно, в наименовании поставляемой продукции. Оба эти факта делают применение светодиодов доступным для широкого круга пользователей.
4) Создание светодиода.
Создание непосредственно светодиода – это заключительный этап технологической цепочки. Создается корпус будущего источника света, монтируются выводы, подбирается люминофор (если он необходим). Но особо стоит отметить такую важную часть, как оптическую систему (а именно, изготовление линз). Линзы для светодиодов изготавливают из эпоксидной смолы, силикона или пластика. К ним предъявляется широкий спектр требований, т.к. оптическая система светодиода играет большую роль (направляет световой поток светодиода в нужный телесный угол). Линзы должны:
- быть максимально прозрачными;
- пропускать свет во всем оптическом диапазоне;
- обладать хорошей клейкостью материала к материалу печатной платы;
- быть температура стабильными;
- обладать высоким сроком службы (что характеризуется к воздействию излучения кристалла и химическому воздействию люминофора, если таковой применен).
Благодаря большому количеству положительных качеств (малой потребляемой мощностью, отсутствию ртути, низкому напряжению питания, высокой надежности, малым габаритам и т.д.), на основе светодиодов создаются разнообразные и высококачественные осветительные светодиодные приборы. Можно долго перечислять различные типы светодиодных светильников: это и прожекторы, и линейные светодиодные светильники, и светильники общего или специального назначения. Однозначно можно сказать, что светодиоды – это динамично развивающиеся источники света. А технология производства светодиодов – сфера деятельности высококлассных мировых специалистов, способных достигать все более высоких результатов.
www.ylati.ru
Производство светодиодных ламп
Производство светодиодных ламп расширяется из года в год, благодаря растущей популярности этого типа освещения. Их применение стало практически повсеместным. Начиная от завораживающей иллюминации на улицах, и заканчивая использованием в помещениях, домах и офисах. Завоевание рынка светодиодными светильниками и лампами в довольно таки короткие сроки произошло благодаря прекрасным качественным и экономичным характеристикам данной продукции.
Дело в том, что срок эксплуатации светодиодной лампы выше обычной или люминесцентной в десятки раз. К тому же использование данных видов ламп оказывает большое влияние на расход электроэнергии, а именно во много раз позволяет сэкономить. Стоимость такой лампы конечно выше, чем стоимость простой, но на деле рабочие качества и экономия доказаны неоднократно. Именно поэтому те, кто действительно умеют считать, стали приверженцами использования именно данного типа продукции. Теперь немного подробнее рассмотрим сам производственный процесс по изготовлению светодиодных ламп.
Технология производства светодиодных ламп
Технология производства светодиодных ламп это довольно таки сложная и кропотливая работа. Для производства светодиодных ламп требуется не только множество специального оборудования, но и толковые работники, которые смогут полностью провести весь процесс производства. К тому же необходимо наличие специального помещения, то есть цеха, где будет располагаться все оборудование и происходить весь процесс изготовления и сборки светодиодных ламп и светильников.
К необходимому оборудованию для производства светодиодов отнести аппараты, наносящие паяльную маску, автомат, который проводит установку элементов, для проведения начальных работ по монтажу, трафареты для печатания плат, печки для спайки компонентов платы. Для того что бы оборудование функционировало в полном рабочем объеме, без сбоев и простоев, необходимо включить в штат сотрудников парочку технологов инженеров с опытом. В их обязанности будет входить такая работа как, составление проектов по расположению компонентов на печатной плате, подготовка соответствующих документов, планов, написание программного обеспечения для автоматических машин. Сам же процесс производства и работу автоматов должны контролировать опытные операторы.
Кстати говоря, не все элементы платы светодиодных ламп при производстве целесообразно выполнять и паять на аппаратах, многие из них спаиваются ручным способом, именно поэтому важно организовать специальный участок для подобных работ. Устанавливают светодиодные кристаллы в корпус посредством автоматов, равно как и проводят контакты токопроведения.
Этап сборки при производстве светодиодных ламп
После производства и проверки на специальных машинах, на готовую плату устанавливается сам светодиод. Далее на специальном оборудовании монтируются драйвера и дополнительные платы. Контакты корпуса присоединяют к чипу. Делается это двумя способами, посредством эпоксидного геля либо силикона. Сами драйвера обматываются лентой, предназначенной для термоусадки, которая защищает драйвер от перенагревания. Уже после проведения всех вышеперечисленных операций производится укладка готовой лампы в корпуса, ставятся заглушки по бокам и можно сказать, что лампа готова. После всех проведенных работ лампу обязательно подвергают тестированию и проверки на пригодность и рабочую способность. Если готовое изделие отвечает всем стандартам качества, его отправляют на заключительные стадии производства. Лампу упаковывают и маркируют, после чего поставляют на рынок.
Применение в наши дни данной продукции обусловлено еще и его экологичностью, дело в том, что при использовании простой лампы накаливания в атмосферу поступает значительное количество углекислого газа, чего не наблюдается за светодиодными лампами, которые к тому же после окончания эксплуатационного срока могут быть подвергнуты утилизации. Как говорят специалисты, в ближайшем будущем данная продукция насовсем вытеснит своих предшественников, тем более что производство светодиодных ламп осваивает все больше и больше компаний.
promplace.ru
Конструирование и производство светодиодов
Появление новой линзы C14556_STRADA-2X2-TF позволяет создавать однокорпусные ригельные светильники, в которых вся оптика устанавливается на одну плоскость. Это заметно упрощает конструкцию ригельного светильника и снижает его себестоимость. Данное решение хорошо тем, что в нем используется оптика всего одного типа в едином корпусе и обеспечивается лучшая равномерность освещенности.
Разъемы принадлежат к числу ключевых элементов, обеспечивающих параметры и качество любого оборудования. Особое место в этом классе электронных компонентов занимают разъемы для уличного влагозащищенного оборудования. В статье рассмотрены разъемы, кабельные соединители и разветвители турецкой фирмы TTAF Elektronik с уровнем защиты IP68, позволяющим использовать их длительное время в воде на глубине до одного метра. Эта продукция — идеальное решение для уличных светодиодных табло, внешнего освещения и систем электропитания в помещениях с повышенной влажностью и агресcивной атмосферой.
В статье рассмотрено применение силиконовой оптики для нового семейства «выскотемпературных» СД Cree семейства SC5, что дает возможность безопасно использовать весь ресурс приборов в рекомендуемых производителем режимах, за счет чего можно уменьшать габариты и размер радиатора и, соответственно, снизить себестоимость СД-светильников.
В настоящее время на смену газоразрядным лампам приходят светодиодные светильники. Сейчас многие производители «вчерашних» светильников пытаются освоить технологии создания светильников «завтрашнего дня». Чтобы начать производство новых светильников, можно либо заняться разработкой всех частей светильника «с нуля», либо создавать свое из уже существующих на рынке деталей и блоков. В этой статье мы покажем, что даже из стандартных модулей можно создать бюджетный светильник для улиц и промышленных зон с превосходными техническими характеристиками и интеллектуальным управлением.
В статье рассмотрен работающий непосредственно от сети переменного тока светодиодный излучатель, который по фотометрическим и электрическим характеристикам сравним с конструкциями, питающимися постоянным током.
Стоимость светодиодных компонентов — всего лишь одна статья расходов, связанных с проектированием и производством полупроводниковых осветительных систем. На себестоимость, характеристики и срок службы светотехнической продукции для общего освещения влияют также пригодность для конкретной цели, качество регулирования тепловых режимов и свойства корпуса.
Продолжение. Начало в №5’2013 В данной статье продолжается описание исследования, проведенного для определения паяльных материалов, позволяющих производителям получить наиболее надежное паяное соединение. В ходе исследования испытывались серийно производимые платы светодиодных модулей, всего было изучено девять типов паяльных паст: пять бессвинцовых и четыре свинецсодержащих.
Практика эксплуатации светодиодных осветительных устройств в жестких внешних условиях показывает, что дальнейшее повышение световой эффективности возможно не только за счет увеличения световой отдачи светодиодов, но и за счет конструктивных особенностей светильника, а также применяемых технологических материалов. Многие производители стремятся уйти от использования защитного стекла и возложить его роль на вторичную оптику, которая герметизируется на плате. Примером может служить успешно реализованный эксперимент «Свет без преград», в ходе которого многими компаниями-участниками была испытана, проверена и доказана возможность эффективной герметизации вторичной оптики без дополнительного защитного стекла, а также подтверждена надежность такого решения.
Переход от обычных источников освещения к светодиодным системам диктует необходимость других принципов проектирования для достижения преимуществ светодиодного освещения. Основной способ основан на паралелльном планировании тепловых, электрических, оптических и спектральных свойств источника освещения. В статье объясняют этот способ важностью управления электропитанием светодиодов, сравнивая технологии модуляции с постоянным током, различая гибкость и эффективность.
Надежность паяного соединения между корпусом светодиода и печатной платой имеет очень большое значение в обеспечении общей надежности светодиодного светильника. В статье описывается исследование надежности паяных соединений мощных светодиодов с помощью рентгеноскопии, а также термографирования.
Всем проектировщикам и производителям светодиодных светильников известно, что с ростом тока через светодиод (СД) растет температура перехода, возрастает, но медленнее, излучаемый световой поток, изменяется цветовая температура. Но большинству это известно «в общем», поэтому говорить об оптимальности большого количества конструкций, особенно светильников средней и большой мощности, можно лишь с большой натяжкой. В статье приведены некоторые результаты исследований, которые могут оказать практическую помощь заинтересованным в качестве продукции специалистам.
Результаты любых тепловых расчетов требуют обязательной проверки путем замеров температуры на реальной конструкции. Измерения позволяют убедиться, что принятое тепловое решение, с одной стороны, обеспечивает охлаждение перехода светодиодного чипа до требуемой температуры, а с другой — что решение не является избыточным, что важно с экономической точки зрения. Описанное в данной статье решение наглядно показывает возможности эффективного измерения температурных режимов работы светодиода, что существенно сокращает этапы разработки.
Интерес к созданию осветительных приборов на основе светодиодов продолжает расти, а световая эффективность полупроводниковых излучателей в некоторых случаях уже превышает 100 лм/Вт. Данная волна докатилась до нашего предприятия: наступил момент, когда заказчик поставил перед нами задачу увеличить срок службы светильника без существенных изменений фотометрических характеристик.
Значение тока биновки — это параметр, на который обычно ориентируются разработчики светодиодных систем освещения. Однако многие разработчики не знают, что высококачественные светодиоды могут выдерживать нагрузку более высокими токами, что позволяет в системах освещения обойтись меньшим количеством светодиодов. При разработке подобных систем необходимо учитывать многие факторы.
Всеобщее признание LED-технологии как экономически эффективной для замены традиционных ламп накаливания бросает серьезный вызов разработчикам. Ошибки инженеров могут привести к уменьшению срока службы ламп на основе светодиодов. Сложность и надежность цепей управления светодиодами — вопросы, на которые нужно обратить особое внимание для достижения максимального срока службы LED-ламп.
На конференции Strategies in Light были представлены методы снижения издержек и повышения выхода готовой продукции при производстве светодиодных компонентов.
Приведена оценка методов контроля теплового режима кристаллов полупроводниковых светодиодов в типовой конструкции лампы синего и белого цвета. Показано, что наиболее корректным является бесконтактное измерение рабочей температуры p-n-перехода кристаллов оптическим методом, путем контроля температурного смещения максимума спектра излучения или по изменению ширины полосы излучения на уровне 0,5 от ее максимума.
Развитие производства мощных светодиодов с улучшенными характеристиками имеет более высокие темпы по сравнению с решением технических задач, связанных с применением таких светодиодов. Усовершенствование световых приборов идет по многим направлениям, в частности, по пути повышения эффективности систем охлаждения, что в принципе должно позволить использовать в световых приборах мощные (до 100 Вт) светодиоды. О современных методах отвода тепла от рабочей области светодиода расскажет эта статья.
В светодиодной промышленности широко используются пленки нитрида галлия (GaN), выращенные в специальном реакторе методами газофазной эпитаксии на подложке из сапфира. Уменьшение термических напряжений, возникающих в структурах GaN/сапфир, является важной задачей для получения качественных подложек и последующего производства высокоэффективных светодиодов.Данная статья рассказывает о подходах к решению этой проблемы.
Одна из частых проблем светодиодных схем — воздействие очень высоких напряжений на конденсаторы в схеме, что ведет к их отказу гораздо раньше ожидаемого окончания срока службы продукта.
Использование метода широтно-импульсной модуляции для управления яркостью светодиодного светильника при определенных временных параметрах импульсов может привести к мерцанию светодиодов. Кроме того, некоторые светодиодные системы освещения разработаны для управления непосредственно переменным током, что также может вызвать эффект мерцания.
На что следует обращать внимание, проектируя светодиодный светильник? В статье рассмотрены основные параметры разрабатываемого светового прибора, их допустимые значения и нормирующие их документы.
По сравнению с иными распространенными источниками света, например лампами накаливания, флуоресцентными, газоразрядными, электролюминесцентными на основе неорганических светодиодов (LED), OLED-источники производят диффузный, не ослепляющий свет, а экраны на их основе обладают высокой цветопередачей и низким энергопотреблением. Кроме того, технология их изготовления открывает широкий простор для дизайнерской мысли в области создания различных форм и способов их комбинации в готовом изделии.
Целью настоящей статьи является ознакомление с типовыми материалами для производства органических светодиодов и их подбором для достижения заданных показателей качества, соответствующих базовым направлениям развития технологии.
Светодиодные системы зачастую разрабатывались на токах, близких к номинальным. Это, одновременно, и распространенная в отрасли «привычка», и консервативный инженерный подход к надежности системы. Новые данные показывают, что вполне возможны гораздо более высокие токи и температуры без ущерба долговременной надежности. Снижение стоимости системы — выигрыш от такого нового подхода.
В статье рассмотрены оригинальные конструктивные решения для мощных светодиодных светильников уличного освещения, позволяющие увеличить срок службы светодиодов до 75 000 ч. Проведен анализ способов повышения эффективности светильников со световыми потоками 10–30 клм, выполненных на базе светодиодных модулей. Описаны отдельные этапы разработки светодиодного модульного светильника собственной конструкции для освещения дорог класса А категории А1.
Данная статья является попыткой вынесения на всеобщее обсуждение некоего алгоритма принятия решения о выводе на рынок того или иного светотехнического изделия, принимая во внимание быстрый прогресс характеристик источников света. Мы постараемся дать ответ на вопрос, как правильно проектировать светильник с учетом быстро меняющихся параметров СИД.
Полупроводниковая светотехника, обеспечивая эффективное использование электрической энергии для получения требуемого уровня освещенности, позволяет повысить качество освещения, во многом определяемое коэффициентом пульсации.
Между отраслями по изготовлению светодиодов и интегральных микросхем существует масса отличий, но, тем не менее, есть много общего. Сотрудничество с поставщиками оборудования может помочь производителям светодиодов получить технологические решения, специально предназначенные или адаптированные для их нужд, а также позволит сократить этап разработки новых продуктов и оптимизировать производственные процессы.
Сотрудники Panasonic Corporation Lighting Company А. Мотойа, М. Каи, Й. Манабе и C. Шида провели исследование, чтобы выяснить, изменение каких параметров имеет наибольшее влияние на тепловой режим светодиодных ламп.
Проанализированы факторы, влияющие на эффективность и надежность светодиодных источников света и приборов на их основе. Предложена и описана программная модель по ускоренному анализу степени надежности этих изделий.
Толчком к написанию этой статьи послужило впечатление от XVI Международной специализированной выставки «Энергетика Урала — 2010», которая проходила в Уфе в октябре 2010 г. [1]. Основной целью ее посещения было знакомство с последними конструкциями светодиодных ламп, которые вот-вот должны будут заменить энергопрожорливую «лампочку Ильича».
Медхан Кумар (Madhan Kumar) и Сачин Гупта (Sachin Gupta) раскрывают секреты цветового пространства и предлагают способы точной настройки светодиодных источников белого света.
В настоящее время полупроводниковая светотехника получает все более широкое распространение. Ежегодно технологии выращивания кристаллов и изготовления светодиодов достигают новых высот, позволяя внедрять в повседневную эксплуатацию современные источники света. Светодиодное освещение экономично, экологически безопасно и на сегодня не имеет подтвержденных медицинских противопоказаний. Действительно, светодиоды — самая перспективная технология освещения, которая постоянно совершенствуется и имеет огромный потенциал развития. Одним из серьезных минусов светодиодов как источников света является их крайне высокая блескость. В статье рассмотрена проблема блескости светодиодных светильников, приведены решения, позволяющие добиться достаточной равномерности световой поверхности светильника.
Конструирование источников света из сочетания красных, зеленых и синих светодиодов является привлекательной задачей, поскольку такие источники могут вырабатывать широкую гамму цветов. Сами по себе светодиоды надежны и высокоэффективны. Светодиодные конструкции повлекут усовершенствования во многих традиционных областях применения источников света (например, в подсветке ЖК-экранов), а также найдут новые применения — например, для адаптивной подсветки салона автомобиля. Однако прежде чем изготовление высококачественных многоцветных светодиодных источников света станет возможным, необходимо решить ряд технологических проблем. В этой статье описывается интегральная схема ASSP (Application Specific Standard Product — специализированное стандартное изделие), позволяющая справиться со многими из этих трудностей.
Одной из критических операций технологического процесса светодиодного производства является этап разделения пластин с уже сформированной топологией посредством дисковой резки на отдельные кристаллы для последующего корпусирования. Обеспечение максимально высокого качества резки, увеличение выхода годных кристаллов и, следовательно, повышение эффективности производства достигается за счет отлаженного технологического процесса и современного надежного оборудования, удовлетворяющего всем установленным производственным требованиям.
Во второй статье цикла публикаций о конструировании полупроводниковых световых приборов (ПСП) речь пойдет о формировании углового распределения силы света. Свет, непосредственно выходящий из светодиодов, далеко не всегда «пригоден» для использования — очень часто его необходимо перенаправить: в одних случаях сфокусировать, чтобы изготовить прожектор, в других — распределить, чтобы снизить яркость и изготовить светильник общего освещения. В статье рассказывается о методах, позволяющих получать от светильника такое пространственное распределение силы света, которое отвечало бы поставленным задачам.
Сегодня, в первой статье цикла публикаций о конструировании полупроводниковых световых приборов (ПСП), речь пойдет о тепловом менеджменте. Под этим термином подразумевается набор конструктивных решений, принимаемых на этапе проектирования и разработки светового прибора, целью которых является обеспечение требуемого теплового режима работы. Примерами результатов теплового менеджмента являются: применение радиаторов, улучшение тепловых интерфейсов, оптимизация конвекционного охлаждения. Кроме того, важной подзадачей теплового менеджмента является оптимизация стоимости конструкции светового прибора.
Ранее уже рассматривались основные вопросы использования светодиодов в прожекторном приборе и светильнике [1]. Представляет интерес оценка возможности применения светодиодных модулей в проекционной технике при проекции изображений как на прозрачной (диапроекция), так и на непрозрачной (эпипроекция) основе, в том числе и в их комбинации (эпидиапроекция).
led-e.ru
© 2005-2018, Национальный Экспертный Совет по Качеству.