Производство этилового спирта (стр. 2 из 3). Завод производство этилового спирта
Производство этилового спирта - часть 2
Другим отправным фактором в газофазном процессе выступает весьма низкая по сравнению с этиленом летучесть воды, которая имеет решающее значение для определения давления процесса. Последнее, при прочих равных условиях, зависит от парциального давления паров воды, т.е. тоже от температуры.
Таким образом, температура становится важнейшим параметром, определяющим не только скорость, но и общее давление процесса. Так, в соответствии со стехиометрическим уравнением реакции, для эквимолярной смеси этилена и паров воды, парциальное давление последних должно составлять примерно половину от общего давления. Однако с целью предотвращения конденсации водяного пара в самом реакторе, что приводит к разбавлению фосфорной кислоты и парализует действие катализатора, парциальное давление паров воды, а, значит, и общее давление, должно быть несколько ниже. И действительно, в промышленности применяют общее давление около 8,0МПа.
Имеются и другие пути, предотвращающие появление водяного конденсата. Во-первых, это повышение температуры. Однако, в силу экзотермичности процесса, этот путь принципиально непригоден, т.к. приводит к снижению конверсии этилена и интенсификации побочных процессов. Во-вторых, это снижение парциального давления паров водяного пара за счет повышения парциального давления этилена. Однако, этот путь тоже непригоден. Он также приводит к снижению выхода этанола, т.к. оптимальным соотношением между реагирующими компонентами является эквимолярное. Мольное соотношение, используемое в промышленности, этилен – пары воды равно 1 : 0,6-0,8.
Выбранное соотношение компонентов диктует выбор общего давления:
Робщ = РС2Н4 + РН2О + Ринерт .
Известно, что давление паров воды над 85%-ной фосфорной кислотой при температуре 2800 С составляет 2,7МПа. Принимая во внимание мольное соотношение между компонентами, видно, что давление паров этилена составляет около 4,7МПа. В таком случае концентрация инертных примесей должна быть порядка 15% (Ринерт = РС2Н4 *0,15/0,85). Давление больше 8МПа нежелательно т.к. происходит конденсация водяного пара.
В настоящее время процесс гидратации этилена реализуется в промышленности при следующих условиях: t = 280-3000 С; Р = 8,0МПа; мольное соотношение пары воды: этилен = 0,6 : 0,8; катализатор – фосфорная кислота и фосфаты на алюмосиликате или силикагеле при содержании Н3 РО4 до 35% в свободном состоянии, объемная скорость циркулирующего газа 1800-2000ч-1 , что соответствует продолжительности контакта 18-20с и производительности 180-200кг этанола с 1м3 катализатора в 1 ч.
При этих условиях этилен расходуется примерно следующим образом: 95% - на образование этанола; 2-3% - этилового эфира; 1-2% - ацетальдегида; 1-2% - полимеров и др. продуктов.
В приведенных условиях гидратации максимальный выход (равновесный) за один проход может составить только 10%; практически он достигает лишь 5%, что приводит к необходимости многократной циркуляции реакционной газовой смеси через слой катализатора.
Увеличение объемной скорости является методом интенсификации рециркуляционного процесса, поэтому процесс синтеза этанола ведут с большими объемными скоростями.
Малая конверсия этилена и низкая производительность катализатора обусловили необходимость работы не с разбавленным, а с концентрированным 98-99% этиленом. Даже при таком концентрированном этилене, т.е. при содержании в нем до 2% инертных примесей, они накапливаются в рециркулирующем газе, что приводит к снижению содержания этилена. Нижний предел концентрации этилена принят сегодня 85%, что соответствует содержанию инертных примесей до 15%. Поэтому необходим отвод последних с частью рециркулирующего газа (отдувка), которая составляет 13% от подачи свежего 98%-ного этилена.
Из рециркулирующей реакционной газовой смеси необходим непрерывный отвод получаемого этанола. Практически удаление этанола производится обычным методом конденсации, при этом вода как менее летучий компонент конденсируется с большей полнотой. Это приводит к огромным затратам тепла (учитывая крупнотоннажность производства этанола) на получение водяного пара, из которого только 5% расходуется на конденсацию этанола, а остальные 95% - на конденсацию воды. Поэтому возникает острая необходимость в утилизации тепла непрореагировавшего водяного пара путем эффективного теплообмена между потоками выходящего из реактора и входящего в него газовых смесей, а также путем генерации вторичного водяного пара в котлах-утилизаторах. Относительно низкий температурный потенциал тепла (250-3000 С) приводит к громоздкой системе теплообмена и теплоиспользующих аппаратов.
Однако интенсивная циркуляция реакционной газовой смеси, кратность которой (при выходе этанола около5%) достигает 20, и сравнительно невысокая теплота реакции позволяет весьма просто реализовать процесс в адиабатическом реакторе колонного типа. Выделяющаяся теплота реакции повышает температуру реагирующего газового потока лишь на 15-200 С, что допустимо.
Несмотря на весьма малую летучесть фосфорной кислоты, унос ее в виде паров при такой значительной рециркуляции реакционной газовой смеси и высокой температуре достигает 0,4-0,5кг/ч с 1м3 катализатора, что может вызвать коррозию аппаратуры и ограничивает длительность нормальной работы катализатора до 500-600 часов. В связи с этим была разработана технология непрерывной подачи свободной фосфорной кислоты в реакционную газовую смесь на входе в реактор, нейтрализации ее щелочью на выходе из реактора и регенерация из полученных при нейтрализации солей. Это позволило увеличить длительность работы катализатора до 1500 часов, заметно сократить расход фосфорной кислоты и значительно уменьшить коррозию оборудования. Такой процесс можно проводить в стальной аппаратуре.
Из приведенной физико-химической характеристики процесса можно вывести основные положения, которые были приняты при разработке существующей технологической схемы.
1. Необходимо построить схему по принципу многократной циркуляции реакционной газовой смеси через реактор с отводом целевого продукта – этанола – конденсацией;
2. В качестве исходного продукта следует применять чистый этилен с минимальным содержанием инертных примесей, которые накапливаются в реакционной смеси и частично отводятся с рециркулирующей газовой смесью в виде «отдувки»;
3. Повышение давления процесса ограничено из-за опасности конденсации воды, снижающей активность катализатора;
4. Процесс необходимо проводить при эквимолярном или близком к нему соотношении этилен / водяной пар;
5. Необходимо наиболее полно регенерировать тепло, расходуемое на получение водяного пара;
6. Возможно применение адиабатического реактора простейшей конструкции;
7. Целесообразно подпитывать поступающую в реактор реакционную газовую смесь свежей фосфорной кислотой, необходима нейтрализация паров кислоты на выходе из реактора, включая регенерацию ее из выпавших солей.
5.Описание технологической схемы процесса производства этилового спирта
Технологическая схема синтеза производства этилового спирта
Технологические схемы синтеза этанола различаются способами получения водяного пара и системами утилизации тепла. В наиболее совершенных схемах водяной пар для синтеза получают путем рецикла воды после отделения этанола и использованием водяного конденсата.
Свежий и оборотный этилен сжимают в компрессорах 1,2 до 8МПа, смешиваются с водяным паром, подогреваются в теплообменнике 4 теплом отходящей от реактора смеси и перегреваются в трубчатой печи 3 до 275 °С, после чего подаются в реактор – гидрататор 5. Перед входом в реактор в поток вбрызгивается фосфорная кислота для подпитки катализатора, что продлевает срок его службы.
Реактор представляет собой полую колонну высотой Юм и диаметром 1,5м, работающую в режиме идеального вытеснения. Для исключения влияния коррозии от фосфорной кислоты изнутри он выложен листами красной меди.
Реакционные газы содержат пары унесенной фосфорной кислоты, которая нейтрализуется гидроксидом натрия, а образующиеся соли выделяются в солеотделителе 6. Унос фосфорной кислоты составляет 0,4 - 0,5 т/час с 1 мЗ катализатора.
Теплота отходящих реакционных газов регенерируется в теплообменнике 4 для нагрева входящей смеси. В холодильнике 7 происходит конденсация продуктов реакции, а в сепараторе 8 разделяются жидкие и газовые потоки. Вода, как менее летучий компонент, конденсируется с большей полнотой. Поэтому для дополнительного выделения спирта производится его отмывка водой в абсорбере 9. Непрореагировавший газэ содержащий 90 -92% этилена, рециркулируют компрессором 2, а часть его сбрасывают, чтобы избежать накопления примесей в системе. Отдувка составляет примерно 20% от введенного этилена и направляется на установку газоразделения для выделения этилена.
Водный конденсат после сепаратора 8 и жидкость из абсорбера 9 дросселируют (сбрасывают давление), в результате чего выделяются растворенные газы, отделяемые в сепараторе низкого давления 10 и направляемые в топливную линию.
Жидкая фаза из сепаратора 10 представляет собой 15% - ный водный раствор этанола, содержащий примеси диэтилового эфира, ацетальдегида и низкомолекулярных полимеров этилена. Этот раствор подвергают ректификации в ректификационных колоннах 11 и 12. В первой отгоняют наиболее летучий диэтиловый эфир и ацетальдегид, а во второй - этиловый спирт в виде азеотропной смеси, содержащей 95% этанола и 5% воды. Обогрев колонны осуществляется острым паром. В кубе колонны 12 остается вода, которую очищают от соли в ионообменной установке 13 и возвращают на гидратацию, организуя замкнутый цикл по технологической воде. Это позволяет значительно снизить расход свежей воды, исключить сброс отработанной воды в стоки и сократить потери этанола.
mirznanii.com
Производство этилового спирта.
Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из синтетического сырья, все более и более заменяется синтетическим.
Синтетический спирт из этилена в несколько раз дешевле пищевого и требует меньших затрат труда.
Этиловый спирт широко применяется в различных отраслях промышленности: для получения синтетического каучука, ацетальдегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ и т.д.
Этиловый спирт получают прямой гидратацией этилена:
С2Н4 + Н2О С2Н5ОН + Q (6.1.)
Помимо основной реакции, протекают побочные:
2С2Н4 + Н2О = (С2Н5)2О + Q (6.2.)
С2Н4 + Н2О = С2Н4О + Н2 - Q (6.3.)
Таким образом процесс получения этанола: сложный, обратимый, экзотермический.
Чтобы сдвинуть равновесие в сторону гидратации этилена необходимо понижение температуры и повышение давления, так как процесс идет с уменьшением числа молей.
Однако, при температуре ниже 2800С скорость гидратации очень мала, а применение давления свыше 8 МПа экономически не рентабельно.
В качестве катализатора используется фосфорная кислота, нанесенная на широкопористые носители: силикагель или алюмосиликат. Носители, обладающие широкими порами, облегчают протекание диффузии реагентов внутрь зерен пористого катализатора.
В результате обширных исследований и промышленных испытаний установлены следующие условия синтеза этанола: 1) температура 280-2900С, 2) давление 6-8 МПа, 3) концентрация этилена в циркулирующем газе 80-85%(объемн.), 4) молярное отношение воды к этилену 0,6-0,7 : 1, 5) концентрация фосфорной кислоты на поверхности катализатора не ниже 83%, 6) объемная скорость 1800-2500 ч-1.
Перечисленные условия позволяют получить водноспиртовый раствор концентрацией спирта 15-16% при конверсии этилена за один проход 4-6%. Для увеличения степени использования сырья процесс проводят по циркуляционной схеме вдали от положения равновесия с большими объемными скоростями.
Для предотвращения накапливания инертов в циркуляционном газе проводят отдувку.
Этилен смешивается с водяными парами и вся смесь направляется в теплообменник (1) и затем в печь (2), откуда парогазовая смесь при 2800С поступает в гидрататор (3), который заполнен катализатором.
Образовавшаяся в результате реакции смесь продуктов последовательно отдает теплоту в теплообменнике (1) и затем окончательно охлаждается в холодильнике (5). Полная отмывка газа от паров спирта идет в промывной колонне (6).
Непрореагировавший этилен после сжатия смешивается со свежим этиленом и вновь направляется в гидрататор.
Рис.6.1. Технологическая схема производства этилового спирта прямой гидратацией этилена:
1 –трубчатый теплообменник, 2 –печь, 3 –гидрататор, 4 –сборник, 5 –холодильник, 6 –промывная колонна с насадкой.
Жидкая фаза из сборника 4 и промывной колонны 6 представляет собой 15%-ный водный раствор этанола, содержащий примеси диэтилового эфира, ацетапьдегида и низкомолекулярных полимеров этилена. Этот раствор подвергается ректификации в двух ректификационных колоннах. В первой отгоняют наиболее летучие диэтиловый эфир и ацетальдегид, а во второй – этиловый спирт в виде азеотропной смеси, содержащей 95% этанола и 5% воды. В кубе колонны остается вода, которую очищают в ионообменной установке и возвращают на гидратацию, организуя замкнутый рецикл по технологической воде. Это позволяет значительно снизить расход свежей воды, исключить сброс отработанной воды в стоки и сократить потери этанола.
Глава 7.
Производство метанола.
Метанол по значению и объемам производства является одним из важнейших многотоннажных продуктов, выпускаемых современной химической промышленностью.
Области применения: для получения пластических масс, синтетических волокон, синтетического каучука, в качестве растворителя, для микробиологического синтеза и т.д.
Метанол впервые был обнаружен Р. Бойлем в 1661 году в продуктах сухой перегонки древесины (отсюда название метанола – древесный спирт). В чистом виде выделен в 18344 году Ж. Дюма и Э. Пелиго, установившими его формулу.
Промышленное производство метанола из водорода и оксида угдерода (II) впервые было осуществлено в 1923 году и с тех пор непрерывно совершенствуется.
В нашей стране производство метанола впервые организовано в 1934 году в объеме 30 т в сутки на Новомосковском химическом комбинате из водяного газа газификацией кокса.
В качестве сырья для получения метанола могут использоваться: природный газ, синтез-газ производства ацетилена, газы нефтепереработки, твердое топливо.
Твердое топливо сохраняет в качестве сырья определенное значение. Разработка процесса газификации угля с целью получения синтез-газа, содержащего Н2, СО, СО2, может изменить структуру сырьевой базы производства метанола, и неудобный для транспортировки уголь будет превращен в удобный для хранения, транспортировки и использования метанол.
Синтез метанола основан на обратимых реакциях, описываемых уравнениями:
СО + 2Н2 СН3ОН; ΔH = -90,8 кДж (7.4.)
СО2 +3Н2 СН3ОН + Н2О; ΔH = -49,6 кДж (7.5.)
Реакции (5.4.) и (5.5.) – обратимы, экзотермичны и протекают с уменьшением объема.
С термодинамической точки зрения для смещения равновесия в сторону образования метанола необходимо проводить процесс при низких температурах и высоком давлении. Однако, для увеличения скорости реакции необходимо повышение температуры. При этом выбирая температурный режим, следует учитывать образование побочных продуктов: метана, высших спиртов, кетонов и эфиров.
Приведем некоторые побочные реакции:
СО + 3Н2 = СН4 + Н2О (7.6.)
2СО + 4Н2 = (СН3)2О + Н2О (7.7.)
4СО + 8Н2 = С4Н9ОН + 3Н2О (7.8.)
2СО = СО2 + С (7.9.)
т.е. процесс получения метанола является сложным.
Побочные реакции обуславливают бесполезный расход синтез-газа и удорожают очистку метанола.
Применяемый для синтеза метанола катализатор должен обладать высокой селективностью, т.е. максимально ускорять образование метанола при одновременном подавлении побочных реакций. Для синтеза метанола предложено много катализаторов. Лучшими оказались катализаторы, основными компонентами которых являются оксид цинка или медь.
Катализаторы синтеза метанола весьма чувствительны к каталитическим ядам, поэтому первой стадией процесса является очистка газа от сернистых соединений. Сернистые соединения отравляют цинк-хромовые катализаторы обратимо, а медьсодержащие катализаторы – необратимо. Необходима также тщательная очистка газа от карбонила железа, который образуется в результате взаимодействия оксида углерода с железом аппаратуры. На катализаторе карбонил железа разлагается с выделением элементного железа, что способствует образованию метана.
Процесс получения метанола осуществляется либо на цинк-хромовом катализаторе при давлении 30 МПа, либо на низкотемпературном медьсодержащем катализаторе при давлении 5 МПа.
Цинк-хромовый катализатор работает в области температур 370-3900С, медьсодержащий – 220-2800С.
Таким образом, процесс получения метанола является гетерогенно-каталитическим. Лимитирующая стадия – адсорбция водорода на поверхности катализатора.
Для смещения равновесия реакции вправо процесс проводят с избытком водорода, при следующем соотношении исходных компонентов- Н2: СО= 2,15-2,30. Кроме того, водород ускоряет процесс, обладая высокой теплопроводностью, позволяет проводить процесс в узком температурном интервале, гидрирует продукты уплотнения на катализаторе, чем повышает срок его службы.
С возрастанием объемной скорости газа выход метанола падает. Такая закономерность основана на том, что с увеличением объемной скорости уменьшается время контакта газа с катализатором и, следовательно, концентрация метанола в газе, выходящем из реактора.
С увеличением объемной скорости подачи сырья содержание метанола в газе снижается, однако за счет большего объема газа, проходящего в единицу времени через тот же объем катализатора, производительность последнего увеличивается. На практике процесс синтеза метанола осуществляют при объемных скоростях 20 000-40 000 ч-1. Степень превращения СО за проход составляет 15-50%, при этом в контактных газах содержится только –4% метанола.
С целью возможно более полной переработки синтез-газа необходимо его возвращение в цикл после выделения метанола и воды.
При циркуляции в синтез-газе накапливаются инертные примеси, что приводит к снижению давления в системе и повлечет за собой снижение выхода и скорости процесса. Поэтому концентрацию инертных примесей регулируют частичной отдувкой циркуляционного газа. Отдувка проводится с таким расчетом, чтобы количество инертов, поступающих со свежем синтез-газом, было равно количеству инертов, удаляемых с отдувкой.
Читайте также:
lektsia.com
Производство этилового спирта из непищевого сырья
Производство спирта из картофеля, зерна, мелассы, сахарной свеклы требует расхода больших количеств этих ценных видов сырья. Замена такого сырья более дешевым является одним из источников экономии пищевых продуктов и снижения себестоимости спирта. Поэтому в последнее время значительно увеличилось производство технического этилового спирта из непищевого сырья: древесины, сульфитных щелоков и синтетическим путем из этиленсодержащих газов.
Производство спирта из древесины
Гидролизная промышленность выпускает из растительных отходов, содержащих целлюлозу, в частности из древесных отходов, ряд продуктов: этиловый спирт, кормовые дрожжи, глюкозу и др.
На гидролизных заводах целлюлозу гидролизуют минеральными кислотами до глюкозы, которая используется для сбраживания в спирт, выращивания дрожжей и выпуска в кристаллическом виде. Существуют гидролизные заводы различного профиля: гидролизно-спиртовые, гидролизно-дрожжевые, гидролизно-глюкозные. Гидролизная промышленность имеет большое народнохозяйственное значение; оно обусловлено тем, что из малоценных растительных отходов получают ценные продукты. В частности, из 1 т абсолютно сухой хвойной древесины получают 170-200 л этилового спирта, для выработки которого потребовалось бы 0,7 т зерна или 2 т картофеля.
Гидролизная промышленность комплексно перерабатывает древесину, в результате чего на гидролизно-спиртовых заводах получают, кроме этилового спирта, и другие ценные продукты: фурфурол, лигнин, жидкую углекислоту, кормовые дрожжи.
Сырье гидролизного производства
Сырьем гидролизного производства служит древесина в виде различных отходов лесной и деревообрабатывающей промышленности: опилки, щепа, стружка и др. Влажность древесины колеблется от 40 до 60%. Опилки, перерабатываемые гидролизными заводами, обычно имеют влажность 40- 48%. В состав сухих веществ древесины входят целлюлоза, гемицеллюлозы, лигнин и органические кислоты.
Гемицеллюлозы древесины состоят из гексозанов: маннана, галактане и пентозанов: ксилана, арабана и их метилированных производных. Лигнин представляет собой сложное вещество ароматического ряда, химический состав и строение его еще не установлены.
Химический состав абсолютно сухой древесины приведен в таблице 1.
Таблица 1 — Химический состав абсолютно сухой древесиныКроме древесины, в качестве сырья для гидролизной промышленности применяются и растительные отходы сельского хозяйства: подсолнечная лузга, кукурузная кочерыжка, хлопковая шелуха, солома зерновых злаков.
Химический состав растительных отходов сельского хозяйства представлен в таблице 2.
Таблица 2 — Химический состав растительных отходов сельского хозяйстваТехнологическая схема комплексной переработки древесины
Технологическая схема комплексной переработки древесины состоит из следующих стадий: гидролиз древесины, нейтрализация и очистка гидролизата; сбраживание гидролизного сусла, перегонка гидролизной бражки.
Измельченную древесину подвергают гидролизу разбавленной серной кислотой при нагревании под давлением. При гидролизе гемицеллюлозы и целлюлоза разлагаются. Гемицеллюлозы превращаются в гексозы: глюкозу, галактозу, маннозу и пентозы: ксилозу и арабинозу; целлюлоза — в глюкозу. Лигнин при гидролизе остается в виде нерастворимого остатка.
Гидролиз древесины осуществляют в гидролизном аппарате — стальном цилиндрическом сосуде. В результате гидролиза получают гидролизат, содержащий около 2-3% сбраживаемых моносахаридов и нерастворимый остаток-лигнин. Последний можно использовать непосредственно в производстве строительных плит, в кирпичном производстве, при помоле цемента, в качестве топлива; после соответствующей обработки лигнин может применяться в производстве пластмасс, резиновой промышленности и др.
Полученный гидролизат направляют в испаритель, где пар отделяется от жидкости. Выделяющийся пар конденсируют и используют для выделения из него фурфурола, скипидара и метилового спирта. Затем гидролизат охлаждают до 75-80°С, нейтрализуют в нейтрализаторе известковым молоком до pH 4-4,3 и добавляют питательные соли для дрожжей (сернокислый аммоний, суперфосфат). Полученный нейтрализат отстаивают для освобождения от выпавшего осадка сернокислого кальция и других взвешенных частиц. Осевший осадок сернокислого кальция отделяют, сушат, обжигают и получают алебастр, используемый в строительной технике. Нейтрализат охлаждают до 30-32°С и направляют на брожение. Подготовленный таким образом к брожению гидролизат называется суслом. Брожение гидролизного сусла производят непрерывным способом в бродильных чанах. При этом дрожжи непрерывно циркулируют в системе; дрожжи отделяют от бражки на сепараторах. Выделяющийся при брожении углекислый газ используют для выпуска жидкой или твердой углекислоты. Зрелую бражку, содержащую 1,0-1,5% спирта, направляют для перегонки и ректификации на брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Барда, полученная после перегонки, содержит пентозы и ее используют для выращивания кормовых дрожжей.
Рисунок 1 — Технологическая схема комплексной переработки древесины на гидролизно-спиртовых заводахПри переработке по указанной схеме из 1 т абсолютно сухой хвойной древесины можно получить следующие количества товарных продуктов:
- Спирта этилового, л ………………….. 187
- Жидкой углекислоты, кг …………….. 70
- или твердой углекислоты, кг ……… 40
- Дрожжей кормовых, кг…………….. .. 40
- Фурфурола, кг …………………………….9,4
- Скипидара, кг ……………………………0,8
- Термоизоляционных и строительных лигно-плит, м2 …. 75
- Алебастра строительного, кг ……..225
- Сивушного масла, к г ………………..0,3
Производство спирта из сульфитных щелоков
При производстве целлюлозы из древесины по сульфитному способу в качестве отхода получают сульфитный щелок — коричневую жидкость с запахом сернистого газа. Химический состав сульфитного щелока (%): вода — 90, сухие вещества — 10, в том числе производные лигнина — лигносульфонаты — 6, гексозы — 2, пентозы -1 , летучие кислоты, фурфурол и другие вещества — около 1. Длительное время сульфитные щелока спускали в реки, они загрязняли воду и уничтожали рыбу в водоемах. В настоящее время у нас имеется ряд заводов по комплексной переработке сульфитного щелока на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты. Производство спирта из сульфитных щелоков состоит из следующих стадий: подготовка сульфитного щелока к брожению, сбраживание сульфитнощелокового сусла, перегонка зрелой сульфитной бражки.
Подготовку сульфитного щелока к сбраживанию осуществляют по непрерывной схеме. Щелок продувают воздухом для удаления летучих кислот и фурфурола, задерживающих процесс брожения. Продутый щелок нейтрализуют известковым молоком и затем выдерживают для укрупнения выпавших кристаллов сернокислого и сернистокислого кальция; при этом добавляют питательные соли для дрожжей (сернокислый аммоний и суперфосфат). Затем щелок отстаивают. Осевший осадок- шлам — спускают в канализацию, а осветленный щелок охлаждают до 30-32°С. Подготовленный таким образом щелок называется суслом. Сусло направляют в бродильное отделение и сбраживают так же, как гидролизаты древесины, или применяют метод с подвижной насадкой. Подвижной насадкой называются волокна целлюлозы, остающиеся в щелоке. Метод брожения с подвижной насадкой основан на свойстве некоторых рас дрожжей сорбироваться на поверхности целлюлозных волокон и образовывать хлопья волокнисто-дрожжевой массы, которая в зрелой бражке быстро и полно оседает на дно чана. Брожение проводят в бродильной батарее, которая состоит из головного и хвостового чанов. В бродящем сусле волокна целлюлозы с сорбированными дрожжами находятся в непрерывном движении под влиянием выделяющегося углекислого газа. Отбродившая бражка поступает из головного чана в хвостовой, где заканчивается процесс брожения, и волокна с дрожжами оседают на дно. Осевшую дрожжеволокнистую массу насосом возвращают в головной чан, куда одновременно подают сусло, а зрелую бражку, содержащую 0,5-1% спирта, направляют в брагоректификационный аппарат и получают этиловый спирт, метиловый спирт и сивушное масло. Полученная после перегонки барда содержит пентозы и служит питательной средой для выращивания кормовых дрожжей, которые затем отделяют, высушивают и выпускают в виде сухих дрожжей. Барду после отделения дрожжей, содержащую лигносульфонаты, упаривают до содержания сухих веществ 50-80%. Полученный продукт называется сульфитно-бардяным концентратом и применяется в производстве пластических масс, строительных материалов, синтетических дубителей для получения кожи, в литейном производстве и дорожном строительстве.
Из сульфитно-бардяных концентратов можно получить ценное ароматическое вещество — ванилин.
Технологическая схема комплексной переработки сульфитных щелоков на этиловый спирт, кормовые дрожжи и сульфитно-бардяные концентраты показана на рисунке 2.
Рисунок 2 — Технологическая схема переработки сульфитных щелоков на спиртПри переработке сульфитных щелоков получают в пересчете на 1т еловой древесины:
- Спирта этилового, л ……………….. 30-50
- Спирта метилового, л …………………… 1
- Жидкой углекислоты, л ………….. 19-25
- Сухих кормовых дрожжей, кг …. 15
- Сульфитно-бардяных концентратов влажностью 20%, кг …. 475
Производство спирта синтетическим методом
Сырьем для производства синтетического этилового спирта служат газы нефтеперерабатывающих заводов, которые содержат этилен. Кроме того, можно использовать и другие этиленсодержащие газы: коксовый газ, получаемый при коксовании угля, и попутные нефтяные газы.
В настоящее время синтетический этиловый спирт получают двумя способами: сернокислотной гидратацией и прямой гидратацией этилена.
Сернокислая гидратация этилена
Производство этилового спирта этим способом состоит из следующих процессов: взаимодействия этилена с серной кислотой, при котором образуются этилсерная кислота и диэтилсульфат; гидролиз полученных продуктов с образованием спирта; отделение спирта от серной кислоты и очистка его.
Сырьем для сернокислой гидратации служат газы, содержащие 47-50% вес. этилена, а также газы с меньшим содержанием этилена. Процесс осуществляется по схеме, приведенной ниже.
Рисунок 3 — Технологическая схем а получения синтетического спирта способом сернокислотной гидратацииЭтилен взаимодействует с серной кислотой в реакционной колонне, представляющей собой вертикальный цилиндр. Внутри колонны находятся колпачковые тарелки с переливными стаканами. В нижнюю часть колонны компрессором подают этиленосодержащий газ, сверху в колонну подводят для орошения 97-98%-ная серная кислота. Газ, поднимаясь вверх, на каждой тарелке барботирует через слой жидкости. Этилен с серной кислотой взаимодействует по реакциям:
Из реакционной колонны непрерывно вытекает смесь этилсерной кислоты, диэтилсульфата и непрореагировавшей серной кислоты. Эту смесь охлаждают в холодильнике до 50°С и направляют на гидролиз, при котором протекают такие реакции:
Моноэтилсульфат, полученный в результате второй реакции, подвергают дальнейшему разложению с образованием еще одной молекулы спирта.
Прямая гидратация этилена
Технологическая схема производства этилового спирта способом прямой гидратации этилена представлена ниже.
Рисунок 4 — Технологическая схема прямой гидратации этилена при производстве этилового спиртаСырьем для способа прямой гидратации служит газ с высоким содержанием этилена (94-96%). Этилен сжимают компрессором до 8-9 КПа. Сжатый этилен смешивают с водяным паром в определённых соотношениях. Взаимодействие этилена с водяным паром производят в контактном аппарате — гидрататоре, представляющим собой вертикальную стальную полую цилиндрическую колонну, в которой находится катализатор (фосфорная кислота, нанесенная на алюмосиликат).
Смесь этилена и водяного пара при 280-300°С под давлением около 8,0 КПа подают в гидрататор, в котором поддерживают такие же параметры. При взаимодействии этилена с водяным паром, кроме основной реакции образования этилового спирта, протекают побочные реакции, в результате которых получаются диэтиловый эфир, уксусный альдегид и продукты полимеризации этилена. Продукты синтеза уносят из гидрататора небольшое количество фосфорной кислоты, которая может в дальнейшем оказывать коррозийное действие на аппаратуру и трубопроводы. Чтобы избежать этого, кислоту, содержащуюся в продуктах синтеза, нейтрализуют щелочью. Продукты синтеза после нейтрализации пропускают через солеотделитель, а затем охлаждают в теплообменнике и производят конденсацию водно-спиртовых паров. Получают смесь водно-спиртовой жидкости и непрореагировавшего этилена. Непрореагировавший этилен отделяют от жидкости в сепараторе. Он представляет собой вертикальный цилиндр, в котором установлены перегородки, резко изменяющие скорость и направление газового потока. Этилен из сепаратора отводят во всасывающую линию циркуляционного компрессора и направляют на смешение со свежим этиленом. Водно-спиртовой раствор, вытекающий из сепаратора, содержит 18,5-19% об. спирта. Его концентрируют в отпарной колонне и в виде паров направляют для очистки в ректификационную колонну. Спирт получают крепостью 90,5% об. На заводах синтетического спирта применяется способ прямой гидратации этилена.
Производство синтетического спирта, независимо от способа его получения, значительно более эффективно, чем производство спирта из пищевого сырья. Для получения 1 т этилового спирта из картофеля или зерна необходимо затратить 160-200 чел -дней , из газов нефтепереработки только 10 чел -дней . Себестоимость синтетического спирта примерно в четыре раза меньше себестоимости спирта из пищевого сырья.
nomnoms.info
Производство этилового спирта - часть 3
6.Расчет материального баланса ХТС
Исходные данные
Балансовая математическая модель.
1) N12C2h5 = П*g011C2h5 + N31 *(1-g31 инерт )
2) (N012Н2О +N41Н2О )/ N12C2h5 = Qh3O
3) N12C2h5 *(1-Х) = N31 *(1-g31инерт ) + N30 *(1-g31инерт )
4) Х*МС2Н5ОН *N12C2Н5ОН *jС2Н5ОН =G401 *g401C2Н5ОН
5) 0,5* N12C2h5 *Х*j(С2Н5)2О *М(С2Н5)2О =G402(С2Н5)2О
6) N12C2h5 *Х*jС2Н4О *МС2Н4О =G403
7) N012 h3O =G401 *jС2Н5ОН / МС2Н5ОН + G401 (1 - jС2Н5ОН )/Mh3O + G402 / М(С2Н5)2О + G403 / МС2h5O
8) П(1- g011С2Н4 )/MC2H6 + G403 / МС2h5O =N30 *g31инерт
Соответствие переменных потокам:
Упорядочение переменных:
1) Х2 = 9000*0,98/28+Х1 (1-0,15)
2) (Х3 +Х4 )/Х2 =0,6
3) Х2 (1-0,06)=Х1 (1-0,15)+Х5 (1-0,15)
4) 0,06*46*Х2 *0,95=Х6 *0,95
5) 0,5*0,06*0,03*74*Х2 =Х7
6) 0,06*0,02*44*Х2 =Х8
7) Х3 =Х6 *0,95/46+Х6 (1-0,95)/18+Х7 /74+Х8 /44
8) 9000(1-0,98)/30+Х8 /44=Х5 *0,15
ИЛИ:
1) Х2 =315+0,85Х1
2) Х3 +Х4 -0,6Х2 =0
3) 0,64Х2= 0,85Х1 +0,85Х5
4) 2,74Х2 =0,95Х6
5) 0,07Х2 =Х7
6) 0,05Х2 =Х8
7) Х3 =0,023Х6 +0,014Х7 +0,023Х8
8) 6+0,023Х8 =0,15Х5
Матрица:
Решив её получим
Х1 = 595,12 Х5 = 22,93
Х2 = 820,85 Х6 = 2367,52
Х3 = 56,20 Х7 = 57,46
Х4 = 436,31 Х8 = 41,04
Определение масс потоков:
1. Масса воды:G012 = N012 * МН2О =56,20*18=1011,6(кг)
2. Масса эталона в ректификате: GректС2Н5ОН =G401 *j402 =2367,52*0,95=2249,14(кг)
3. Масса воды в ректификате:
GректН2О =G401 * Gрект С2Н5ОН =2367,52-2249,14=118,38(кг)
4. Вода рецикла: GрецН2О = N41 * МН2О =436,31*18=17853,58(кг)
5. Рецикл этиленэтановой фракции:
(кмоль)6. Количество этана + этилена:N31 -NC2h5O =595,12-0,93=594,19(кмоль)
7. Масса этилена в рециклеNC2h5 =594,19*0,98=582,30(кмоль) GC2h5 =582,30*28=16304,4(кг)
8. Масса этана в рецикле NC2H6 =595,12*0,02=11,90(кмоль) GC2H6 =11,90*30=357(кг)
9. Масса водорода в рецикле Gh3 =0,93*2=1,86(кг)
Для отдувки:
NН2 =0,93 кмоль
Поток (этилен + этан): N30 -Nh3 =22,93-0,93=22(кмоль)
Массы этилена, этана и водорода
NC2h5 =22*0,98=21,56(кмоль) GC2h5 =28*21,56=603,68(кг)
NC2H6 =0,02*22=0,44(кмоль) GC2H6 =30*0,44=13,2(кг)
Gh3 = Nh3 * МН2 =0,93*2=1,86(кг)
Материальный баланс ХТС производства этанола
7.Расчет основных технологических показателей процесса:
Расходные коэффициенты по сырью:
gпракт = GС2Н4 / GC2H5ОН =8820/2249,1= 3,9
gстех = МC2h5 / МC2H5ОН = 28/46 = 0,61
Выход:
h = (GC2H5ОН / МC2H5ОН )/(GC2h5 / МC2h5 ) = 75,8%
Х=((GC2H5ОН / МC2H5ОН )/(G(C2H5)О / М(C2H5)О )*2/1)/ GC2h5 / МC2h5 =79%
h = Х*j = 75,1%
8.Литература:
1. Общая химическая технология: Учебник для химико-технологических специальностей. Т. 2.
2. Важнейшие химические производства. / Мухленов И.П., Авербух А.Я., Кузнецов Д.А. и др. Под редакцией И.П. Мухленова. – М.: Высш. шк.,1984.
3. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. – М.: Химия, 1981.
4. Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза. – М.: Химия, 1992.
5. Кононова Г.Н., Сафонов В.В. Учебно-методическое пособие «Производство этилового спирта прямой гидратацией этилена».
mirznanii.com
Статья - Производство этилового спирта
Московская Государственная Академия
Тонкой Химической Технологии
им. М.В. Ломоносова
Кафедра общей химической технологии
Курсовая работа
на тему: «Производство этилового спирта»
Москва
2003 г
Содержание
1. Введение
2. Исходное сырьё
3. Характеристика целевого продукта
4. Физико-химическое обоснование основных процессов производства этилового спирта
5. Описание технологической схемы процесса производства этилового спирта
6. Материальный баланс ХТС производства этанола на 9000кг 100% С2 Н5 ОН
7. Расчет основных технологических показателей процесса
8. Литература
1. Введение
Этиловый спирт находит широкое применение в народном хозяйстве в качестве растворителя, также применяется в производстве дивинила, в пищевой и медицинской промышленности, в качестве горючего для ракетных двигателей, антифриза и т.д., является важным промежуточным продуктом органического синтеза (в производстве сложных эфиров, целлулоида, искусственного шелка, ацетальдегида, уксусной кислоты, хлороформа, хлораля, диэтилового эфира и других продуктов).
Таким образом, этиловый спирт относится к числу многотоннажных продуктов основного органического синтеза, мировое производство этилового спирта составляет свыше 2,5 млн. т/г (по объему производства занимает первое место в мире среди всех органических продуктов).
2. Характеристика исходного сырья
В качестве исходного сырья в производстве этилового спирта используется этилен. В настоящее время основным способом его получения является пиролиз (высокотемпературный крекинг) углеводородов. Пиролизу подвергают фракции прямой перегонки нефти, состоящие алканов, циклоалканов, аренов, природные и попутные нефтяные газы, содержащие алканы.
Этилен образуется в результате реакций распада тяжелых алканов и дегидрирования низкомолекулярных алканов. Потенциальный выход этилена зависит от вида исходного сырья. Виды сырья, используемые в мировом производстве этилена, и их доля в общем балансе производства следующие:
Сырье | Этан | Пропан | Бутан | Бензин | Газойль |
Доля, % | 36 | 11 | 3 | 47 | 3 |
Лучшим сырьем являются парафины, поскольку с повышением содержания водорода в исходных углеводородах выход алкенов возрастает.
3. Характеристика целевого продукта
Этанол C2 H5 OH является жидкостью, кипящей при температуре 78,390С, с воздухом образует взрывоопасные смеси в пределах концентраций 3-20% (по объему). С водой дает азеотропную смесь, содержащую 95,6% спирта и кипящую при температуре 78,10С. В виде такого ректификата этиловый спирт обычно и употребляют в технике.
4.Физико-химическое обоснование основных процессов производства этилового спирта
До недавнего времени производство этилового спирта основывалось на пищевом сырье – сбраживание крахмала из некоторых зерновых культур и картофеля с помощью ферментов, вырабатываемых дрожжевыми грибками. Этот способ сохранился и до сих пор, но он связан с большими затратами пищевого сырья и не может удовлетворить промышленность. Другой метод, также основанный на переработке растительного сырья, заключается в переработке древесины (гидролизный спирт). Древесина содержит до 50% целлюлозы, и при ее гидролизе водой в присутствии серной кислоты образуется глюкоза, которую подвергают затем спиртовому брожению:
(C6 h20 O5 )x + xh3 O — xC6 h22 O6 ,
C6 h22 O6 — 2C2 H5 OH + 2CO2 .
Синтетический этиловый спирт получают гидратацией этилена.
Гидратация этилена осуществляется двумя методами: при помощи серной кислоты (сернокислая гидратация) и непосредственным взаимодействием этилена с водяным паром в присутствии катализатора (парофазная каталитическая гидратация).
Сернокислая гидратация этилена
Сернокислый способ, предложенный А.М. Бутлеровым, получил промышленное осуществление только в послевоенные годы. Он состоит из следующих четырех стадий: 1) абсорбция этилена серной кислотой с образованием сернокислых эфиров; 2) гидролиз эфиров; 3) выделение спирта и его ректификация; 4) концентрирование серной кислоты.
Взаимодействие между этиленом и серной кислотой состоит из двух этапов: первый – физическое растворение этилена в серной кислоте и второй — гомогенное взаимодействие обоих компонентов с образованием алкилсульфатов по уравнениям:
C2 h5 + h3 SO4 = C2 H5 OSO3 H
C2 H5 OSO3 H + C2 h5 = (C2 H5 O)2 SO2.
Поглощение (абсорбция) этилена серной кислотой – процесс обратимый, экзотермический (DH=-50232 кДж/моль), протекает с уменьшением объема.
Скорость абсорбции этилена описывается уравнением:
dG/dt = K*F*P*f(с),
где G – количество поглощаемого этилена, t – время, К – коэффициент, зависящий от интенсивности диффузии, и, следовательно, от интенсивности контакта реагентов (барботаж, перемешивание и т.д.), F – поверхность контакта реагентов, Р – парциальное давление этилена, f(c) – множитель, зависящий от концентрации серной кислоты.
Так, абсорбция этилена 93%-ной кислотой протекает в 10 раз медленнее, чем при концентрации 97,5%. Однако, применение для абсорбции этилена олеума нецелесообразно, т.к. при этом снижается выход этанола из-за образования побочных продуктов – сульфосоединений и повышенного образования полимеров.
При прочих равных условиях скорость абсорбции этилена увеличивается с ростом температуры и парциального давления, однако, при температуре выше 900С начинается интенсивное образование полимеров. Увеличение парциального давления этилена выше 2 МПа становится тоже малоэффективным.
Фактором, ускоряющим процесс абсорбции, является наличие в исходной серной кислоте этилсульфатов, которые, обладая свойствами эмульгаторов, увеличивают поверхность контакта вследствие пенообразования, и тем самым способствуют более быстрому и полному растворению этилена.
В настоящее время в промышленных установках приняты следующие условия абсорбции этилена: концентрация серной кислоты 97-98%, температура 80-850С, парциальное давление этилена на входе в абсорбер 1-1,5МПа, содержание пропилена и высших олефинов в исходной этилен-этановой фракции <0,1%. В ходе второй стадии идет гидролиз этил — и диэтилсульфата по уравнениям:
C2 H5 OSO3 H + h3 O — C2 H5 OH + h3 SO4 ,
(C2 H5 O)2 SO2 + 2h3 O — 2 C2 H5 OH + h3 SO4
Эта стадия также обратима, для обеспечения ее протекания необходим избыток воды, и, по возможности, быстрое удаление спирта из зоны реакции, т.к. кроме основной реакции идет образование диэтилового эфира:
(C2 H5 O)2 SO2 + C2 H5 OH — C2 H5 OC2 H5 + C2 H5 OSO3 H,
(C2 H5 O)2 SO2 + h3 O — C2 H5 OC2 H5 + h3 SO4.
Главным преимуществом сернокислой гидратации по сравнению с прямой гидратацией является возможность применения неконцентрированного этилена, т.к. его концентрирование связано с большими капитальными и эксплуатационными затратами.
Однако, метод сернокислой гидратации имеет ряд недостатков. Среди них можно отметить следующие:
— применение сложных и громоздких конструкций;
— малоэффективное удаление полимеров однократным экстрагированием. При принятом методе экстрагирования в экстракт переходит 70-75% полимеров, значит, до 30% полимеров остается в разбавленной кислоте;
— концентрирование отработанной серной кислоты. Эта часть технологического процесса является самым слабым звеном во всем методе сернокислой гидратации. Во-первых, концентрировать кислоту удается лишь до 88-90%, а, во-вторых, такой процесс концентрирования из-за высокой температуры топочных газов приводит к ощутимым потерям серной кислоты от раскисления, сопровождающегося выбросом вредного SO2 в атмосферу;
— неиспользованные возможности экономии энергетических средств.
Парофазная гидратация этилена
Наиболее разработанным применительно к имеющимся промышленным установкам в настоящее время является процесс газофазной гидратации:
Ch3 =Ch3(г.) + h3 O(г.) = C2 H5 OH(г.) + 41868Дж/моль.
Механизм:
Ch3 =Ch3 + Н+ « СН3 -СН2+ ,
СН3 -СН2+ + Н2 О « СН3 -СН2 -ОН2+ ,
СН3 -СН2 -ОН2+ « СН3 -СН2 -ОН + Н+ .
Но наряду с основной реакцией идут параллельные и последовательные побочные реакции:
C2 h5 + h3 O = C2 H5 OC2 H5 ,
n(C2 h5 ) = (-Ch3 -Ch3 -)n .
Таким образом, процесс сложный, обратимый, несмещенный (см. таблицу), экзотермический, протекает с уменьшением объема.
Таб. Равновесный выход этанола.
Отношение количеств веществ: Мh3O /MC2h5 | Равновесный выход за один проход при давлении 8Мпа при температуре: | |
2800С | 2900С | |
0,6 | 15,4 | 8,53 |
0,8 | 18,3 | 10,15 |
Следует обратить внимание на два физико-химических фактора, которые определяют основные технологические параметры процесса. Прежде всего, это активность катализатора, которая имеет решающее значение для определения температуры процесса. Катализаторами прямой гидратации могут служить фосфорная кислота и ее соли. Чаще всего используется фосфорная кислота концентрацией 85-87% на таких носителях, как алюмосиликаты, силикагели, пемза и др.; значительная часть кислоты (до 35%) находится в свободном состоянии. Активность этого катализатора является невысокой. Только при температуре 280-3000С ее можно считать более или менее приемлемой для промышленных условий. При более высокой температуре в значительной мере развиваются побочные процессы: полимеризация этилена, усиленное образование эфира и т.д.
Другим отправным фактором в газофазном процессе выступает весьма низкая по сравнению с этиленом летучесть воды, которая имеет решающее значение для определения давления процесса. Последнее, при прочих равных условиях, зависит от парциального давления паров воды, т.е. тоже от температуры.
Таким образом, температура становится важнейшим параметром, определяющим не только скорость, но и общее давление процесса. Так, в соответствии со стехиометрическим уравнением реакции, для эквимолярной смеси этилена и паров воды, парциальное давление последних должно составлять примерно половину от общего давления. Однако с целью предотвращения конденсации водяного пара в самом реакторе, что приводит к разбавлению фосфорной кислоты и парализует действие катализатора, парциальное давление паров воды, а, значит, и общее давление, должно быть несколько ниже. И действительно, в промышленности применяют общее давление около 8,0МПа.
Имеются и другие пути, предотвращающие появление водяного конденсата. Во-первых, это повышение температуры. Однако, в силу экзотермичности процесса, этот путь принципиально непригоден, т.к. приводит к снижению конверсии этилена и интенсификации побочных процессов. Во-вторых, это снижение парциального давления паров водяного пара за счет повышения парциального давления этилена. Однако, этот путь тоже непригоден. Он также приводит к снижению выхода этанола, т.к. оптимальным соотношением между реагирующими компонентами является эквимолярное. Мольное соотношение, используемое в промышленности, этилен – пары воды равно 1: 0,6-0,8.
Выбранное соотношение компонентов диктует выбор общего давления:
Робщ = РС2Н4 + РН2О + Ринерт .
Известно, что давление паров воды над 85%-ной фосфорной кислотой при температуре 2800С составляет 2,7МПа. Принимая во внимание мольное соотношение между компонентами, видно, что давление паров этилена составляет около 4,7МПа. В таком случае концентрация инертных примесей должна быть порядка 15% (Ринерт = РС2Н4 *0,15/0,85). Давление больше 8МПа нежелательно т.к. происходит конденсация водяного пара.
В настоящее время процесс гидратации этилена реализуется в промышленности при следующих условиях: t = 280-3000С; Р = 8,0МПа; мольное соотношение пары воды: этилен = 0,6: 0,8; катализатор – фосфорная кислота и фосфаты на алюмосиликате или силикагеле при содержании Н3 РО4 до 35% в свободном состоянии, объемная скорость циркулирующего газа 1800-2000ч-1, что соответствует продолжительности контакта 18-20с и производительности 180-200кг этанола с 1м3 катализатора в 1 ч.
При этих условиях этилен расходуется примерно следующим образом: 95% — на образование этанола; 2-3% — этилового эфира; 1-2% — ацетальдегида; 1-2% — полимеров и др. продуктов.
В приведенных условиях гидратации максимальный выход (равновесный) за один проход может составить только 10%; практически он достигает лишь 5%, что приводит к необходимости многократной циркуляции реакционной газовой смеси через слой катализатора.
Увеличение объемной скорости является методом интенсификации рециркуляционного процесса, поэтому процесс синтеза этанола ведут с большими объемными скоростями.
Малая конверсия этилена и низкая производительность катализатора обусловили необходимость работы не с разбавленным, а с концентрированным 98-99% этиленом. Даже при таком концентрированном этилене, т.е. при содержании в нем до 2% инертных примесей, они накапливаются в рециркулирующем газе, что приводит к снижению содержания этилена. Нижний предел концентрации этилена принят сегодня 85%, что соответствует содержанию инертных примесей до 15%. Поэтому необходим отвод последних с частью рециркулирующего газа (отдувка), которая составляет 13% от подачи свежего 98%-ного этилена.
Из рециркулирующей реакционной газовой смеси необходим непрерывный отвод получаемого этанола. Практически удаление этанола производится обычным методом конденсации, при этом вода как менее летучий компонент конденсируется с большей полнотой. Это приводит к огромным затратам тепла (учитывая крупнотоннажность производства этанола) на получение водяного пара, из которого только 5% расходуется на конденсацию этанола, а остальные 95% — на конденсацию воды. Поэтому возникает острая необходимость в утилизации тепла непрореагировавшего водяного пара путем эффективного теплообмена между потоками выходящего из реактора и входящего в него газовых смесей, а также путем генерации вторичного водяного пара в котлах-утилизаторах. Относительно низкий температурный потенциал тепла (250-3000С) приводит к громоздкой системе теплообмена и теплоиспользующих аппаратов.
Однако интенсивная циркуляция реакционной газовой смеси, кратность которой (при выходе этанола около5%) достигает 20, и сравнительно невысокая теплота реакции позволяет весьма просто реализовать процесс в адиабатическом реакторе колонного типа. Выделяющаяся теплота реакции повышает температуру реагирующего газового потока лишь на 15-200С, что допустимо.
Несмотря на весьма малую летучесть фосфорной кислоты, унос ее в виде паров при такой значительной рециркуляции реакционной газовой смеси и высокой температуре достигает 0,4-0,5кг/ч с 1м3 катализатора, что может вызвать коррозию аппаратуры и ограничивает длительность нормальной работы катализатора до 500-600 часов. В связи с этим была разработана технология непрерывной подачи свободной фосфорной кислоты в реакционную газовую смесь на входе в реактор, нейтрализации ее щелочью на выходе из реактора и регенерация из полученных при нейтрализации солей. Это позволило увеличить длительность работы катализатора до 1500 часов, заметно сократить расход фосфорной кислоты и значительно уменьшить коррозию оборудования. Такой процесс можно проводить в стальной аппаратуре.
Из приведенной физико-химической характеристики процесса можно вывести основные положения, которые были приняты при разработке существующей технологической схемы.
1. Необходимо построить схему по принципу многократной циркуляции реакционной газовой смеси через реактор с отводом целевого продукта – этанола – конденсацией;
2. В качестве исходного продукта следует применять чистый этилен с минимальным содержанием инертных примесей, которые накапливаются в реакционной смеси и частично отводятся с рециркулирующей газовой смесью в виде «отдувки»;
3. Повышение давления процесса ограничено из-за опасности конденсации воды, снижающей активность катализатора;
4. Процесс необходимо проводить при эквимолярном или близком к нему соотношении этилен / водяной пар;
5. Необходимо наиболее полно регенерировать тепло, расходуемое на получение водяного пара;
6. Возможно применение адиабатического реактора простейшей конструкции;
7. Целесообразно подпитывать поступающую в реактор реакционную газовую смесь свежей фосфорной кислотой, необходима нейтрализация паров кислоты на выходе из реактора, включая регенерацию ее из выпавших солей.
5.Описание технологической схемы процесса производства этилового спирта
Технологическая схема синтеза производства этилового спирта
Технологические схемы синтеза этанола различаются способами получения водяного пара и системами утилизации тепла. В наиболее совершенных схемах водяной пар для синтеза получают путем рецикла воды после отделения этанола и использованием водяного конденсата.
Свежий и оборотный этилен сжимают в компрессорах 1,2 до 8МПа, смешиваются с водяным паром, подогреваются в теплообменнике 4 теплом отходящей от реактора смеси и перегреваются в трубчатой печи 3 до 275 °С, после чего подаются в реактор – гидрататор 5. Перед входом в реактор в поток вбрызгивается фосфорная кислота для подпитки катализатора, что продлевает срок его службы.
Реактор представляет собой полую колонну высотой Юм и диаметром 1,5м, работающую в режиме идеального вытеснения. Для исключения влияния коррозии от фосфорной кислоты изнутри он выложен листами красной меди.
Реакционные газы содержат пары унесенной фосфорной кислоты, которая нейтрализуется гидроксидом натрия, а образующиеся соли выделяются в солеотделителе 6. Унос фосфорной кислоты составляет 0,4 — 0,5 т/час с 1 мЗ катализатора.
Теплота отходящих реакционных газов регенерируется в теплообменнике 4 для нагрева входящей смеси. В холодильнике 7 происходит конденсация продуктов реакции, а в сепараторе 8 разделяются жидкие и газовые потоки. Вода, как менее летучий компонент, конденсируется с большей полнотой. Поэтому для дополнительного выделения спирта производится его отмывка водой в абсорбере 9. Непрореагировавший газэ содержащий 90 -92% этилена, рециркулируют компрессором 2, а часть его сбрасывают, чтобы избежать накопления примесей в системе. Отдувка составляет примерно 20% от введенного этилена и направляется на установку газоразделения для выделения этилена.
Водный конденсат после сепаратора 8 и жидкость из абсорбера 9 дросселируют (сбрасывают давление), в результате чего выделяются растворенные газы, отделяемые в сепараторе низкого давления 10 и направляемые в топливную линию.
Жидкая фаза из сепаратора 10 представляет собой 15% — ный водный раствор этанола, содержащий примеси диэтилового эфира, ацетальдегида и низкомолекулярных полимеров этилена. Этот раствор подвергают ректификации в ректификационных колоннах 11 и 12. В первой отгоняют наиболее летучий диэтиловый эфир и ацетальдегид, а во второй — этиловый спирт в виде азеотропной смеси, содержащей 95% этанола и 5% воды. Обогрев колонны осуществляется острым паром. В кубе колонны 12 остается вода, которую очищают от соли в ионообменной установке 13 и возвращают на гидратацию, организуя замкнутый цикл по технологической воде. Это позволяет значительно снизить расход свежей воды, исключить сброс отработанной воды в стоки и сократить потери этанола.
6.Расчет материального баланса ХТС
Исходные данные
1. | Концентрация С2 Н4 в этиленовой фракции. | g011С2Н4 | 0,98 |
2. | Содержание С2 Н5 ОН в ректификате | g403С2Н5ОН | 0,95 |
3. | Норма расхода пара. | Qh3O | 0,6 |
4. | Конверсия этилена | Х | 0,06 |
5. | Селективность | jC2Н5ОН | 0,95 |
6. | Степень превращения конвертированного этилена в: диэтиловый эфир; Ацетальдегид | j(С2Н5)2О jС2Н4О | 0,03 0,02 |
7. | Содержание инертов в циркуляционном газе | g31инерт | 0,15 |
8. | Количество С2 Н5 ОН (базис расчета) | П | 9000 |
Балансовая математическая модель.
1) N12C2h5 = П*g011C2h5 + N31 *(1-g31 инерт )
2) (N012Н2О +N41Н2О )/ N12C2h5 = Qh3O
3) N12C2h5 *(1-Х) = N31 *(1-g31инерт ) + N30 *(1-g31инерт )
4) Х*МС2Н5ОН *N12C2Н5ОН *jС2Н5ОН =G401 *g401C2Н5ОН
5) 0,5* N12C2h5 *Х*j(С2Н5)2О *М(С2Н5)2О =G402(С2Н5)2О
6) N12C2h5 *Х*jС2Н4О *МС2Н4О =G403
7) N012 h3O =G401 *jС2Н5ОН / МС2Н5ОН + G401 (1 — jС2Н5ОН )/Mh3O + G402 / М(С2Н5)2О + G403 / МС2h5O
8) П(1- g011С2Н4 )/MC2H6 + G403 / МС2h5O =N30 *g31инерт
Соответствие переменных потокам:
№ | Наименование потока | Условное обозначение | Хi |
1. | Рецикл этилен – этановой фракции | N31 | Х1 |
2. | Поток этилена | N12C2h5 | Х2 |
3. | Поток воды | N012 | Х3 |
4. | Рецикл воды | N41 | Х4 |
5. | Отдувка | N30 | Х5 |
6. | Масса ректификата | G401 | Х6 |
7. | Масса эфира (С2 Н5 )2 О | G402 | Х7 |
8. | Масса ацетальдегида С2 Н4 О | G403 | Х8 |
Упорядочение переменных:
1) Х2 = 9000*0,98/28+Х1 (1-0,15)
2) (Х3 +Х4 )/Х2 =0,6
3) Х2 (1-0,06)=Х1 (1-0,15)+Х5 (1-0,15)
4) 0,06*46*Х2 *0,95=Х6 *0,95
5) 0,5*0,06*0,03*74*Х2 =Х7
6) 0,06*0,02*44*Х2 =Х8
7) Х3 =Х6 *0,95/46+Х6 (1-0,95)/18+Х7 /74+Х8 /44
8) 9000(1-0,98)/30+Х8 /44=Х5 *0,15
ИЛИ:
1) Х2 =315+0,85Х1
2) Х3 +Х4 -0,6Х2 =0
3) 0,64Х2= 0,85Х1 +0,85Х5
4) 2,74Х2 =0,95Х6
5) 0,07Х2 =Х7
6) 0,05Х2 =Х8
7) Х3 =0,023Х6 +0,014Х7 +0,023Х8
8) 6+0,023Х8 =0,15Х5
Матрица:
Х1 | Х2 | Х3 | Х4 | Х5 | Х6 | Х7 | Х8 | Своб. чл. |
-0,85 -0,85 | 1 -0,6 0,64 2,74 0,07 0,05 | 1 1 | 1 | -0,85 -0,15 | -0,95 -0,023 | -1 -0,014 | -1 -0,023 0,23 | 315 6 |
Решив её получим
Х1 = 595,12 Х5 = 22,93
Х2 = 820,85 Х6 = 2367,52
Х3 = 56,20 Х7 = 57,46
Х4 = 436,31 Х8 = 41,04
Определение масс потоков:
1. Масса воды:G012 = N012 * МН2О =56,20*18=1011,6(кг)
2. Масса эталона в ректификате: GректС2Н5ОН =G401 *j402 =2367,52*0,95=2249,14(кг)
3. Масса воды в ректификате:
GректН2О =G401 * Gрект С2Н5ОН =2367,52-2249,14=118,38(кг)
4. Вода рецикла: GрецН2О = N41 * МН2О =436,31*18=17853,58(кг)
5. Рецикл этиленэтановой фракции: (кмоль)
6. Количество этана + этилена:N31 -NC2h5O =595,12-0,93=594,19(кмоль)
7. Масса этилена в рециклеNC2h5 =594,19*0,98=582,30(кмоль) GC2h5 =582,30*28=16304,4(кг)
8. Масса этана в рецикле NC2H6 =595,12*0,02=11,90(кмоль) GC2H6 =11,90*30=357(кг)
9. Масса водорода в рецикле Gh3 =0,93*2=1,86(кг)
Для отдувки:
NН2 =0,93 кмоль
Поток (этилен + этан): N30 -Nh3 =22,93-0,93=22(кмоль)
Массы этилена, этана и водорода
NC2h5 =22*0,98=21,56(кмоль) GC2h5 =28*21,56=603,68(кг)
NC2H6 =0,02*22=0,44(кмоль) GC2H6 =30*0,44=13,2(кг)
Gh3 = Nh3 * МН2 =0,93*2=1,86(кг)
Материальный баланс ХТС производства этанола
приход | расход | ||||
наименование | кг | % масс. | Наименование | кг | % масс. |
1. этиленовая фракция: этилен этан 2. вода 3. рециркулирующий газ: этилен этан водород вода | 9000 8820 180 1011,6 16304,4 357 1,86 17853,6 | 20,2 19,8 0,04 2,3 36,6 0,8 0,004 40,1 | 1. ректификат. этанол вода 2. ацетальдегид 3. отдув. газы: этилен этан водород 4. рециркулирующий газ: этилен этан водород вода 5. эфир 6. невязка | 2367,5 2249,1 118,38 41,04 603,68 13,2 1,86 16304,4 357 1,86 17853,6 57,46 92 | 7,3 7,1 1,3 0,09 6,8 0,03 0,004 36,6 0,8 0,004 40,1 0,13 0,21 |
Всего | 44528,5 | 100 | ВВсего | 44528,5 | 100 |
7.Расчет основных технологических показателей процесса:
Расходные коэффициенты по сырью:
gпракт = GС2Н4 / GC2H5ОН =8820/2249,1= 3,9
gстех = МC2h5 / МC2H5ОН = 28/46 = 0,61
Выход:
h = (GC2H5ОН / МC2H5ОН )/(GC2h5 / МC2h5 ) = 75,8%
Х=((GC2H5ОН / МC2H5ОН )/(G(C2H5)О / М(C2H5)О )*2/1)/ GC2h5 / МC2h5 =79%
h = Х*j = 75,1%
8.Литература:
1. Общая химическая технология: Учебник для химико-технологических специальностей. Т. 2.
2. Важнейшие химические производства. / Мухленов И.П., Авербух А.Я., Кузнецов Д.А. и др. Под редакцией И.П. Мухленова. – М.: Высш. шк.,1984.
3. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза. – М.: Химия, 1981.
4. Тимофеев В.С., Серафимов Л.А. Принципы технологии основного органического и нефтехимического синтеза. – М.: Химия, 1992.
5. Кононова Г.Н., Сафонов В.В. Учебно-методическое пособие «Производство этилового спирта прямой гидратацией этилена».
www.ronl.ru
© 2005-2018, Национальный Экспертный Совет по Качеству.