ДОМАШНИЙ БИЗНЕС

БИЗНЕС БЕЗ ВЛОЖЕНИЙ

БИЗНЕС ДЛЯ ЖЕНЩИН

МАЛЫЙ БИЗНЕС

БИЗНЕС-ПЛАН

ИДЕИ ДЛЯ БИЗНЕСА

БИЗНЕС-СОВЕТЫ

БИЗНЕСМЕНАМ

ИНТЕРНЕТ-БИЗНЕС

Технология производства поливинилхлорида (ПВХ). Поливинилхлорида производство


18 Производство поливинилхлорида в массе.

Основным сырьем для производства ПВХ служит винилхлорид (ВХ) СН2 =СНС1. ВХ  бесцветный газ с приятным эфирным запахом, Ткип -14°С.ВХ растворяется в ацетоне, этиловом спирте, ароматических и алифатических углеводородах, но в воде нерастворим.

Особенности полимеризации ВХ: в отсутствие кислорода и инициаторов термическая полимеризация мономера не происходит, но в присутствии кислорода полимер образуется довольно быстро. Полимеризация ВХ в присутствии инициаторов протекает гораздо быстрее в атмосфере азота, чем воздуха.

При полимеризации ВХ в массе реакцию проводят в жидком мономере, в котором предварительно растворен инициатор. Она приводит к образованию порошка полимера, нерастворимого в мономере. Процесс осуществляется периодическим пли непрерывным методом как при отрицательных, так и при положительных температурах. Технологический процесс включает следующие стадии: предварительная полимеризация ВХ, окончательная полимеризация ВХ, выделение порошка полимера, промывка, сушка, просеивание и упаковка порошка (рис. 8.1).

Из сборника 1 в автоклав 2 загружают ВХ и инициатор (динитрил азобисизомасляной кислоты), а в рубашку автоклава подают воду температурой 60-65°С. Давление в автоклаве повышается. При непрерывном перемешивании турбинной мешалкой в течение часа происходит предварительная полимеризация ВХ, приводящая к образованию суспензии ПВХ в жидком ВХ.

Суспензию сливают в горизонтальный автоклав 3, добавляют регулятор молекулярной массы (циклопентен, тетрагидрофуран) и низкотемпературный инициатор (пероксид водорода, аскорбиновая кислота , сульфат железа) и реакцию в 9 ч доводят до 60-85%-ной конверсии ВХ при температуре от -10 до -20°С. Непрореагировавший ВХ из автоклава после фильтрования, охлаждения и конденсации возвращается в сборник 1, а порошок полимера поступает в бункер 4 далее на вибросито 5, где отбирается фракция с размером частиц не более 1 мм. Порошок полимера промывают горячей водой на центрифуге 6, подают в бункер 7, а затем с помощью транспортера 8 загружают в сушилку 9. После сушки горячим воздухом порошок собирают в бункер 10, просеивают на вибросите 11 и упаковывают в тару 12. Крупную фракцию ПВХ измельчают и перерабатывают отдельно.

Достоинства полимеризации в массе: высокая чистота полимера, его повышенные электроизоляционные свойства, прозрачность изделий.

7

10

Св-ва ПВХ,его термостабильность и стабилизация

ПВХ является аморфным термопластичным полимером со слабой регулярностью. Полимер обладает значительной полидисперсностью .Молекулярная масса = 40 000-150 000.

ПВХ растворяется в хлорированных углеводородах, смеси ацетона с бензолом, диоксане, циклогексаноне, метилэтилкетоне и др. Растворимость полимера уменьшается с повышением молекулярной массы.

При нагревании выше 140°С начинается разложение ПВХ, сопровождающееся выделением хлористого водорода, что затрудняет его переработку, так как температура текучести полимера равна 150-160°С. Переработка ПВХ производится при 140-180°С. Разложение полимера сопровождается изменением окраски (от желтой до коричневой) и ухудшением растворимости. ПВХ изменяется также под действием света («стареет»). Причиной изменения окраски ПВХ следует считать появление сопряженных двойных связей в цепях макромолекул:

СН2СНС1СН2СНС1~  ~СН=СНСН=СН  2НС1

Физико-механические свойства ПВХ в результате деструкции ухудшаются: возрастает хрупкость, уменьшается относительное удлинение при разрыве.

Термостабильность ПВХ удается повысить, вводя специальные вещества  стабилизаторы, способные на определенный срок замедлить или предотвратить разложение полимера.

Все стабилизаторы по их действию можно разделить на четыре группы. К первой группе относятся вещества, которые адсорбируют выделяющийся хлористый водород и таким образом предотвращают его каталитическое действие. Вторая группа включает нейтрализующие вещества, вступающие в химическое взаимодействие с выделяющимся хлористым водородом, а третья и четвертая группы состоят из веществ, предотвращающих действие кислорода и ультрафиолетового света на ПВХ.

Эффективность стабилизаторов зависит от их дисперсности (чем больше активная поверхность, тем сильнее стабилизирующее действие), от тщательности распределения в массе полимера и от присутствия в композиции других компонентов.

studfiles.net

28.3.2 Производство винилхлорида

Винилхлорнд производится для дальнейшей полимеризации его в поливинилхлорид, занимающий по объему его промышленного производ­ства второе место после полиэтилена. Ежегодное производство поливинилхлорида в США составляет более 4 млн.тонн.

Промышленное получение винилхлорида было начато в 1938 году на основе присоединения хлористого водорода к ацетилену.

Эта реакция катализируется солями ртути, идет в одну стадию в до­статочно мягких условиях, а выход хлористого винила достигает 90%. Главным недостатком этого процесса является использование дорого­стоящего ацетилена и токсичных солей ртути, отравляющих окружа­ющую среду. Более дешевым сырьем для получения хлорвинила является доступный в настоящее время этилен. Поэтому сейчас для произ­водства хлористого винила используют процесс, называемый оксихло-рирование этилена. Он состоит в реакции этилена с хлористым водо­родом в присутствии кислорода в качестве окислителя, приводящей к 1,2-дихлорэтану.

Выход дихлорэтана составляет 90-95% от теоретического. Дихлорэтан превращается в хлористый винил в результате пиролиза при 500°С, и образующийся НСl рециклизуют в процессе оксихлорирования этилена.

Превращение дихлорэтана в хлористый винил осуществляется по цепно­му радикальному механизму:

Для того, чтобы избежать дальнейших превращений винилхлорида, пи­ролиз 1,2-дихлорэтана прерывают на глубине превращения 50-60% с рециклизацией дихлорэтана для последующего акта пиролиза. Это дает возможность достичь 99%-ного выхода винилхлорида. Превращение эти­лена в хлористый винил осуществляется в две, а реально в три ста­дии, что экономически невыгодно. Сейчас технология оксихлорирования этилена изменяется таким образом, чтобы получение дихлорэтана и его пиролиз выполнялись в одном реакторе при 450оС, что удеше­вило бы весь процесс производства хлористого винила. На получение хлористого винила расходуется от 15% до 20% из 50 млн. тонн ежегод­но производимого этилена.

Хлористый винил используется в качестве мономера для получения поливинилхлорида и сополимеров хлористого винила с другими мономерами - винилацетатом СН3С(О)ОСН=СН2 и винилиденхлоридом СН2=CCl2.

Поливинилхлорид образуется при радикальной полимеризации винилхлорида.

Поливинилхлорид - твердый, прочный, термопластичный материал с молярной массой от 300 тысяч до 1,5 млн. Этот твердый и жесткий полимерный материал можно сделать мягким и гибким с помощью различного рода пластификаторов - дибутилфталата, диоктилфталата или трикрезилфосфата, наибольшее значение среди пластификаторов приоб­рел диоктилфталат. Из пластифицированного поливинилхлорида изго­товляют гибкие листы для покрытия полов и отделки стен, пленоч­ные материалы, электрические кабели и изоляцию проводов, искусс­твенную кожу, игрушки, спортивные товары, скатерти, занавески и т.д. Из жесткого, непластифицированного поливинилхлорида изготовляют нержавеющие вентиляционные трубы, трубопроводы, насосы и другие изделия. Из поливинилхлорида можно получать и волокна. Его применяют для производства технических тканей, рыболовных сетей и медицинского белья. По объему производства среди других полимерных материалов поливинилхлорид уступает только полиэтилену.

Наиболее важным сополимером винилхлорида является его сополимер с винилацетатом, который применяется главным образом для производ­ства граммофонных пластинок и покрытий для полов. Сополимер винил­хлорида с винилиденхлоридом известен под названием саран.

Саран нашел применение в качестве упаковочного материала для пищевых продуктов.

studfiles.net

Технология производства поливинилхлорида (ПВХ)

Поливинилхлорид (ПВХ) – широко применяемый полимер-термопласт, синтезируемый путем полимеризации винилхлорида в присутствии хлорида натрия. Материал находит широкое применение при изготовлении искусственных волокон и кож, пленок, профилей для светопрозрачных конструкций, а также используется для решения многих других задач. 

Специфика производства поливинилхлорида

Производство является сложным и наукоемким, всего существует три основных метода полимеризации винилхлорида, которые мы рассмотрим далее. Как и в случае с полиэтиленом, для которого свойства готового полимера напрямую зависят от параметров полимеризации, свойства готового ПВХ определяются применяемой технологией производства. Получаемая разными технологиями продукция имеет различные сферы применения и свойства. 

Потому в современных условиях полимеры винилхлорида делятся на две основных группы: суспензионные и эмульсионные.

Методы изготовления ПВХ

  • Полимеризация в массе. Устаревшая технология, на данный момент в промышленных масштабах внедряемая только французской компанией Peshine Sant Gobain. Требует строгого соблюдения температурного режима. Получаемый продукт имеет относительно низкое качество, так как содержит немало остаточного винилхлорида, а также является неоднородным.
  • Полимеризация в эмульсии. Производство эмульсионного ПВХ (ПВХ-Э) предполагает водную среду, с добавлением поверхностно-активных веществ, которые выступают эмульгаторами. Для инициаторов процесса используются пероксиды либо гидроксиды. Главной особенностью процесса является использование таких инициаторов, которые не растворяются в винилхлориде, но растворяются в воде. В ходе полимеризации образовывается латекс, который подлежит последующей дегазации, нейтрализации, стабилизации, после чего из него выделяется чистый полимер. 
  • Полимеризация в суспензии. Самый распространенный метод полимеризации, обеспечивающий точное управление параметрами получаемого вещества при помощи компьютера. Суспензионный ПВХ применяется для изготовления профилей для пластиковых окон и других изделий с повышенными требованиями к качеству. Технология предполагает полимеризацию в водной среде с добавлением метилцеллюбозы или других стабилизаторов, а также инициаторов (ПДЭГ, АЦСП, порофор и др). После прохождения реакции полимеризации полученная суспензия дегазируется, усредняется, центрифугируется и сушится. Высушенный продукт просеивается и фасуется.

Как эмульсионный, так и суспензионный ПВХ пользуются стабильным спросом в России и находят широкое применение в разных сфера промышленной деятельности.

unitreid-group.com

Поливинилхлорид ПВХ производство значение - Справочник химика 21

    Для развития производства поливинилхлорида очень важно, чтобы вырабатываемые из него материалы были конкурентоспособны с материалами из других пластмасс. Этого можно достигнуть в первую очередь путем удешевления стоимости пластификаторов и стабилизаторов, а также самого поливинилхлорида. Большое значение приобретает разработка рецептуры пластикатов с небольшим содержанием пластификатора или вообще без него. [c.85]     В настоящее время уже определились основные направления наиболее целесообразного использования полимеров в строительстве. Рулонные и плиточные материалы все шире применяются для покрытия полов (например, на основе поливинилхлорида), а на основе вспененных полимеров могут быть изготовлены новые виды тепло- и звукоизоляционных материалов для утепления зданий. Большое значение имеют синтетические лакокрасочные материалы, бумажно-слоистые пластики, пленки, моющиеся обои для отделки стен. Перспективно использование при крупнопанельном строительстве долговечных латексных кровельных покрытий, мастичных и профильных материалов на основе синтетических каучуков. Внедрение древесностружечных и древесноволокнистых плит позволяет изготовлять встроенную мебель и шкафы, перегородки, а также высококачественные дверные блоки. Полимерные материалы будут находить и в дальнейшем самое широкое применение при производстве различных санитарно-технических изделий и канализационных труб, в качестве связующего при производстве стеклопластика и других строительных материалов. [c.414]

    Обычно в этом случае протекает траяс-присоединение по правилу Марковникова. При присоединении бромистого водорода отмечен пероксидный эффект. Особенно важное значение имеет реакция ацетилена с хлористым водородом, протекающая в газовой фазе при 150—200 в присутствии солей ртути (П). В результате получается винилхлорид, используемый в промышленности для производства поливинилхлорида (см. раздел 3.9)  [c.253]

    В 20-е годы прошлого века важное значение в качестве сырья для органического синтеза приобрели продукты переработки нефти. В частности, этилен оказался ценным сырьем для производства полиэтилена, поливинилхлорида, этилового спирта, ацетальдегида, уксусной кислоты. [c.30]

    Для применения в качестве П. предложено свыше 500 продуктов, однако промышленное значение имеют не более 100. Наиболее широко П. используют при переработке пластмасс (ок. 70% от общего объема производства П.— при переработке поливинилхлорида). Важную роль П. играют и в резиновой промышленности (несмотря на то, что высокоэластич. свойства каучуков проявляются в более широком температурном интервале, чем у пластиков, применение П. необходимо как для переработки каучуков в изделия, так и для придания последним нек-рых специфич. свойств). П. вводят также в лакокрасочные материалы (см. Лаки и эмали). [c.309]

    Применение. Преимущественно в качестве сырья для производства наиболее распространенных в мире пластмасс поливинилхлорида и сополимеров X. с 1,1-дихлорэтиленом, винилацетатом, акрилонитрилом, метилметакрилатом и других, а на их основе — многообразных полимерных материалов (строительных, отделочных, упаковочных), технологического оборудования, товаров широкого потребления, в том числе обувного производства изделий из искусственного меха и других. При этом наибольшее значение имеет изготовление из X. труб и трубопроводов для питьевого и хозяйственного водоснабжения, упаковок для пищевых продуктов. В небольших количествах X. используют как промежуточный продукт при получении 1,1,1-трихлорэтана (менее 5 % от общего производства). Ранее применялся как распылитель для аэрозольных пестицидов, для дезодорантов и др. как охлаждающий агент [55]. [c.417]

    Полимеры и сополимеры на основе винилхлорида. Полимеры и сополимеры на основе винилхлорида занимают большое место в различных областях промышленности. Основным сырьем в производстве поливинилхлорида является винилхлорид. При действии света, тепла и различных инициаторов (органических и неорганических перекисей) винилхлорид образует полимер в виде аморфного порошка. В технике основное значение приобрела полимеризация винилхлорида в присутствии радикальных инициаторов. [c.245]

    Из полимеров этого типа особое значение имеет поливинилхлорид (Х = С1). Производство этого материала началось в конце [c.462]

    Это—первое собственно синтетическое волокно. Поливинилхлорид (P U), имеющий большое значение в производстве пластических масс, очень плохо растворяется почти во всех растворителях. Хлорированием его в тетрахлорэтане можно почти на каждую винильную группу ввести примерно по одному атому хлора общее содержание хлора в полимере достигает при [c.428]

    Для труб из мягкого полиэтилена и поливинилхлорида в основном имеются результаты практических испытаний. Напротив, сразу после начала производства труб из твердого полиэтилена, наряду с производственной проверкой пригодности этого нового сырья для изготовления труб проводились и систематические исследования в лаборатории Проблемы, возникающие при этом, имеют принципиальное значение и поэтому будут рассмотрены более подробно. [c.191]

    При производстве лакокрасочных материалов на основе поливинилхлорида особенно важное значение имеет правильный выбор пигментов. Соединения координационно-ненасыщенных металлов, относящихся к переходной группе (например, Zn, d), нельзя ис- [c.329]

    Методом экструзии можно изготавливать трубы диаметром от десятых долей миллиметра (капиллярные трубки) до 500 мм и более. Для производства труб могут использоваться термопластичные полимерные материалы, расплав которых имеет необходимое значение вязкости. Как правило, трубы изготовляют из высоковязких сортов полимеров, так как при малой вязкости расплава трудно сохранить заданную форму трубы после выхода ее из формующей головки. Наиболее часто трубы производят из полиэтилена, полипропилена, поливинилхлорида, поликарбоната, полистирола или сополимеров олефинов, винилхлорида, стирола. [c.131]

    При изучении реологических зависимостей различных полимеров при температурах переработки было замечено, что для каждого метода переработки выделяется отдельная область. При этом для определенной группы полимеров эти области сравнительно узкие. На основе экспериментальных данных по этому принципу состав лена расчетная номограмма для определения температуры расплава термопластов (полиэтилен, полипропилен, полистирол, полиформальдегид и пластифицированный поливинилхлорид) при изготовлении изделий методами экструзии и литья под давлением (рис. 5.48, а). Для удобства расчетов на номограмме нанесена шкала вязкости и шкала показателя текучести расплава. Как видно из номограммы, производство труб или трубчатых заготовок для выдувания осуществляется при более высокой вязкости, чем пленок. Еще меньшей вязкостью должен обладать расплав при литье под давлением. Естественно, что перерабатывать полимеры можно и при иных значениях вязкости, однако при этом возрастает давление в узлах агрегатов, повышаются энергетические затраты и изменяется качество изделий. Следует заметить, что данную номограмму нельзя использовать для всех полимеров. Например, расплавы поликарбоната и полиметилметакрилата имеют высокую вязкость, повышение температуры вызывает их термическую [c.150]

    Антистатики — вещества, способные при добавлении к синтетическим смолам и пластмассам уменьшать электризацию полимерных материалов в процессе нх переработки и эксплуатации изделий из них. Способность полимерных материалов накапливать заряды статического электричества объясняется тем, что по своим свойствам большинство этих материалов (полиолефины, полистирольные пластики, поливинилхлорид и др.) являются диэлектриками, т. е. обладают большим удельным поверхностным (р ) и объемным (р ,) электрическим сопротивлением (соответственно Ю " —10 ом и 10 5—10 ом-см), а следовательно, и ничтожно малой проводимостью. Высокие показатели диэлектрических свойств полимерных материалов создают условия для скопления электростатических зарядов на трущихся поверхностях изделий искровые разряды статического электричества могут вызвать взрывы и пожары легковоспламеняющихся и горючих жидкостей, огнеопасных газовых смесей, пыли. Кроме того, электризация способствует сильному загрязнению пластмассовых изделий, а также может увеличивать скорость их химической деструкции, при которой возможно выделение токсичных веществ. Устранение зарядов имеет большое экономическое значение, так как электростатические помехи на разных стадиях производства и переработки синтетических материалов являются причиной брака продукции, резко снижают скорости работы машин и аппаратов, а следовательно, препятствуют повышению производительности труда. [c.445]

    Например, для производства резиновой обуви существенное значение имеет замена метода клейки методом литья под давлением. Преимущество нового метода перед традиционным заключается в существенном снижении трудоемкости продукции, но за счет повышения фондоемкости. Сырьем для производства обуви методом литья под давлением являются поливинилхлорид с определенными поставками по импорту и зависимостью от зарубежных партнеров. С другой стороны, повышается рентабельность продукции и т.д. [c.175]

    Для развития производства поливинилхлорида очень важно, чтобы вырабатываемые из него материалы были конкурентноснособны с материалами из других пластических масс. Этого можно достигнуть в первую очередь путем удешевления стоимости пластификаторов и стабилизаторов, а также самого поливинилхлорида. Большое значение приобретает разработка рецептуры нластикатов с небольшим содержанием пластификатора или вообще без него. Решение этих проблем позволит гораздо шире использовать поливинилхлорид и находить для изделий из него новые области применения. [c.54]

    Среди галоидпроизводных этилена, используемых в производстве полимерных синтетических материалов, особенное значение имеют хлористый винил, тетрафторэтилен, трифтормонохлорэтилен и в меньшей степени винилиденхлорпд. Планом развития химической промышленности в СССР предусмотрено на ближайшие 5 лет в 10 раз увеличить производство этих мономеров для обеспечения развития промышленности полимеризационных смол. Прежде всего это относится к хлористому винилу, поскольку поливинилхлорид находит наиболее широкое применение. [c.792]

    Многие двухосновные карбоновые кислоты приобрели большое значение в технике. Сложные эфиры бутилового, октилового, а также других спиртов н адипиновой, себациновой и ортофта-левой (см. стр. 474) кислот являются пластификаторами для поливинилхлорида и некоторых других полимеров. Кроме того, адипиновая кислота вырабатывается в больших количествах в качестве промежуточного продукта в производстве синтетических полиамидных волокон. [c.277]

    Одновременно с производством поливинилхлорида началась разработка способов получения хлорированного поливинилхлорида (ХПВХ). Как и хлорирование других полимеров, например полиолефинов, хлорирование ПВХ проводят в растворе, в суспензии (например, смеси хлорированных углеводородов с водой и соляной кислотой) или в твердой фазе. Существуют и некоторые специальные способы хлорирования ПВХ, которые промышленного значения не имеют. [c.13]

    Намывные фильтры работают в режиме шламовой и стандартной фильтрации, что позволяет вести процесс при высокой скорости— 150—200 л/(м2-ч). Для поддержания высокой скорости фильтрации в некоторых случаях непрерывно дозируют фильтрующий материал в вискозу. Важное значение в этом случае имеет тип фильтрующего материала. Применяемый на ряде производств порошок поливинилхлорида со средним размером частиц 250 мкм обладает рядом недостатков. При таком крупном размере частиц не удается получить слой с малыми размерами пор. Уменьшение же размера частиц приводит к их проскоку, так как они обладают малой степенью анизодиаметрии. Кроме того, поли-в винилхлорид обладает малой адгезией к гель-частицам, что не дает возможности для реализации наиболее эффективного режима стандартной (адсорбционной) фильтрации. В качестве фильтрующего материала предложено использовать [79] химически модифицированное коротко нарезанное целлюлозное волокно МНВ. Поскольку отношение длины волокна к диаметру составляет 200—350, исключается возможность проскока и загрязнения фильтрата. В то же время целлюлозное волокно МНВ обладает высокой адсорбционной способностью, что дает возможность получать вискозы с высокой степенью чистоты [69, 70]. [c.158]

    В отличие от поливинилхлорида сополимеры винилхлорида и винилацетата (винилит — СССР, США) прекрасно перерабатываются методом литья под давлением и пригодны для производства лаков и синтетического волокна. По мере уменьшения доли винилхлорида в сополимере улучшается растворимость сополимера, снижается температура стеклования и повышается эластичность. Техническое значение имеют также сополимеры винилхлорида с метакрилатами, простыми виниловыми эфирами, винили-денхлоридом, акрилатами, малеатами, пропиленом, этиленом и др. Некоторые сомономеры, такие, как малеиновый ангидрид, N-винилпирролидон, акролеин, непредельные сульфокислоты, улучшают адгезию, гидрофильность и окрашиваемость соответствующих полимеров, другие сообщают нм наряду с окраской еще антистатические свойства (N-метакрилоиламиноазобензол) или образуют с винилхлоридом альтернатные сополимеры (акрилонитрил 13 присутствии 2H5AI I2). [c.293]

    Определенное значение может иметь производство на базе изобутилового спирта пластификатора — диизобутилфталата. Кроме фирмы I. С. I., такой пластификатор выпускается в промышленном масштабе фирмой В. А. 3. Р (ФРГ) под маркой палатиноль ТС [5]. Это — бесцветный продукт, практически не имеющий запаха, легко растворимый в растворителях и отличающийся устойчивостью к действию света. По сравнению с дибутилфталатом, он вызывает лишь незначительное желатинирование нитроцеллюлозы и сохраняет текучесть при хранении. При совмещении этого пластификатора с касторовым маслом выделение его на поверхность покрытия не наблюдается. Палатиноль 1С употребляется также в качестве пластификатора для хлоркаучука, полистирола и поливинилхлорида. В отечественной промышленности для этой цели используется дибутилфталат. В условиях Советского Союза применение диизобутилфталата, взамен дибутилфталата, для пластифицирования нитроцеллюлозы, полистирола и хлоркаучука также может оказаться целесообразным. [c.191]

    О значении оксихинолипата меди можно судить на основании того, что из поливинилхлорида и его сополимеров с винилацетатом изготовляется искусственная кожа на основе ткани, служащей носителем для пластической массы. Поскольку при производстве поливинилхлоридных смесей часто применяют пластификаторы или стабилизаторы природного происхождения, а ткань бывает также растительного и животного происхождения, то изделие может оказаться склонным к плесневению (особенно, если поливинилхлорид применяется в виде дисперсии). Поэтому желательно чтобы пластические массы были обработаны фунгицидами. В то же время известно, что 8-оксихинолинат меди плохо совместим с поливинилхлоридными пластическими массами. Фунгицид, внесенный даже в малых дозах (0,2 вес. %) в пластифицированный поливинилхлорид, в течение нескольких часов кристаллизуется или образует налеты на поверхности. В литературе указываются способы улучшения совместимости 8-оксихинолината меди с поливинилхлоридными пластическими массами. Этот фунгицид применяется также и для защиты прессовочных композиций — феноло-формальдегидных, меламино-формальдегидных, мочевино-фор-мальдегидных и меламино-мочевино-формальдегидных с минеральными и органическими наполнителями. Для получения оптимального действия против плесеней необходима концентрация 1—1,5% (от веса прессовочной композиции). [c.126]

    Размеры и структура мощностей по получению различных продуктов гидроформилирования олефинов в Западной Европе в 1971 г. иллюстрируют важное значение этого метода и относительные масштабы производства каждого из продуктов. Наиболее распространенным исходным сырьем является пропилен. Полученные из него бутанолы используются в качестве растворителей (375 тыс. т/год) кроме того, бутанол-1 превращают путем конденсации и последующего гидрирования продукта в 2-этилгексанол (585 тыс. т/год). Зтерификацией этого спирта фталевым ангидридом синтезируют диалкилфталаты, применяемые в качестве пластификаторов поливинилхлорида, который может содержать до 50% пластификатора (гл. 8). К другим спиртам, используемым в производстве пластификаторов (330 тыс. т/год), относятся изооктанолы , получаемые путем гидроформилирования содимеров пропилена и бутилена, и спирты —С9, которые синтезируют из узкой олефиновой фракции Сб—Се, выделяемой из продуктов крекинга твердого парафина. Спирты, полученные гидроформилированием высших олефинов (таких, как додецен), подвергают сульфированию с целью приготовления полупродуктов для производства моющих веществ (в 1971 г. мощности по получению этих спиртов составляли 30 тыс. т/год, а в 1972 г. они должны были, по прогнозной оценке, увеличиться до 36 тыс. т/год). Гидроформилирование [c.185]

    Гомополнмер стирола по своему промышленному значению занимает третье место среди термопластичных материалов, вырабатываемых в Великобритании. Его производство, как и производство полиэтилена и поливинилхлорида, было в значительной степени стимулировано второй мировой войной. Существенное увеличение мощностей по получению стирола-мономера и полистирола в послевоенное время и большие достижения в технологии пластмасс сделали возможным многотоннажное производство полистирола в качестве дешевого термопластичного материала общего назначения. Поскольку этот полимер обладает благоприятным сочетанием таких свойств, как прозрачность, жесткость, легкая перерабатываемость и низкая стоимость, его потребление за послевоенные годы заметно возросло. [c.260]

    Эфиры гликолей и монокарбоновых кислот. Среди этих П. наибольшее значение имеют эфиры триэтиленгликоля и алифатич. монокарбоновых к-т Сд — Сд, а также эфиры бензойной к-ты, применяемые для пластификации поливинилхлорида, поливинилбутираля и др. полимеров. Триэтиленгли-кольдикаприлат используют в производстве шахтных конвейерных лент триэтиленгликоль-ди-(2-этилбути-рат) и триэтиленгликоль-ди-(2-этилгексоат) — для получения пленок поливинилбутираля, используемых в производстве триплекса. [c.309]

    Поливинилхлорид перерабатывают в пластифицированном виде почти всеми методами, пригодными для переработки термопластов. Помимо пластификаторов к нему часто добавляют также наполнители, красители, антистатические агенты, стабилизаторы. Большое количество поливинилхлорида в США (31% в 1970 г.) перерабатывается методом каландрирования. Этот метод быстро развивается и наиболее широко применяется при производстве пленок и листов, часто с одновременным нанесением рисунка. Современные каландры работают со скоростью 91 м1мин и выше. В области каландрирования наблюдается тенденция к использованию четырехвалковых каландров и повышению температуры валков до 170— 190°С. Непрерывно растет значение метода экструзии, который применяется как в случае пластифицированного, так и непластифицированного материала. Большую часть экструдированных изделий составляют пленки и покрытия проводов и кабелей. Часто одновременно с экструзией на пленку наносится печать. Методом экструзии производятся также листы из пенополивинилхлорида. [c.176]

    Оловоорганические соединения в качестве термостабилизаторов были впервые использованы в производстве изделий из жесткого поливинилхлорида. Теперь эти материалы применяют почти наравне со свинцовыми стабилизаторами. Некоторые из оловоорганических соединений, не содержащих серы, находят применение в изделиях, эксплуатируемых на открытом воздухе. Крупной областью потребления производных дио-ктилолова является производство упаковки для пищевых продуктов из жесткого поливинилхлорида. В качестве стабилизаторов при изготовлении пластифицированных поливинилхлоридных пленок и листов для упаковки мясных продуктов используют в основном кальций-цинковые системы. Все больщее значение придается применению оловоорганических соединений в производстве прозрачных бутылей. [c.285]

    Этин можно превратить в очень многие соединения, которые, в частности, приобрели большое значение для производства пластмасс, синтетического каучука, лекарств и растворителей. Например, при присоединении к этину хлористого водорода образуется винилхлорид (хлористый винил)—исходное вещество для получения поливинилхлорида (ПВХ) и пластмасс на его основе. Из этина же получают эта-наль, с которым мы еще познакомимся, а из него — многие другне продукты. [c.154]

    Большое значение при производстве унифицированных и взаимозаменяемых узлов и деталей мебели придают изготовлению из полимерных материалов крепежной и лицевой фурнитуры. Применение крепежной фурнитуры дает возможность быстро и надежно собирать и заменять сложные столярные узлы мебели. Для изготовления крепежной фурнитуры используют полиамидные смолы, ударопрочный полистирол, непласти-фицированный поливинилхлорид и другие полимеры. Лицевую фурнитуру изготовляют из полимерных материалов, хорошо окрашиваемых в нужные цвета. Такая фурнитура должна быть достаточно прочной и отличаться красивым внешним видом. Ее обычно изготовляют из полистирола, сополимеров стирола, поликарбонатов и других полимеров. [c.74]

    За последние десятилетия применение химических продуктов оказывает все большее влияние на технический прогресс промышленности, сельского хозяйства и сферы быта. Среди химических продуктов все возрастающее значение приобретают хлор и хлоро-продукты, особенно органические. Как известно, хлоронродуктами являются такие ценные и многотоннажные вещества, как поливинилхлорид и ряд других полимерных материалов, а также многие полупродукты для их производства и переработки в пластические массы, пленкообразующие вещества, химические волокна. К хло-ропродуктам относится и большинство химических средств защиты растений (гексахлоран, нолихлорпинен, хлорофос, гептахлор, 2,4-Д и др.), дефолиантов, растворителей, дезинфицирующих и отбеливающих веществ и т. д. Хлор и многие хлоропродукты используются также в производстве веществ, не содержащих хлора, например синтетических моющих средств (сульфанол, сульфонат), синтетического глицерина, окиси этилена и др. [c.8]

    Таким образом, продукты переработки хлорпроизводных алкилароматических углеводородов приобрели в последние годы важное значение. Они стали доступными лишь в последнее время благодаря разработке новых высокоэффективных способов хлорирования алкилароматических углеводородов, обеспечивающих получение хлорпроизводных высокого качества и с достаточно высокими выходами. В настоящее время отмечается тенденция непрерывного роста производства хлорсодержащих алкилароматических углеводородов. Этому способствовали, с одаой стороны, непрерывное увеличение в мире производственных мощностей по переработке нефти и производству хлора, с другой,-возрастающий спрос современных отраслей промышленности и техники на полимерные материалы, сочетающие термостойкость, повьппенную механическую прочность и пониженную горючесть. Хотя масштаб производства этих материалов еще мал, особенно по сравнению с производством таких полимеров, как поливинилхлорид и полиэтилен, тем не менее именно эти материалы обеспечивают в настоящее время технический прогресс важнейших отраслей современной техники. [c.12]

    Другие важные конструктивные проблемы возникают в связи с вытяжкой и охлаждением листа. Вытяжку необходимо осуществлять до охлаждения листа. Лист, вытянутый в холодном состоянии, имеет после размотки с боЗины значительную усадку. При производстве пленки, например из поливинилхлорида, целесообразнее зафиксировать величину деформации, созданную отборочным роликом, а не нагревать пленку с целью отжига, так как этот процесс происходит при температуре, значительно превышающей то значение, при котором производилась вытяжка пленки. Лист, вытянутый при высокой температуре и затем охлажденный, в дальнейшем не меняет своих размеров. Вытяжка при низкой температуре не позволяет получить лист со стабильными размерами, и поэтому ее следует избегать. [c.432]

    Желатин. Широко использовавшийся в качестве защитного коллоида в ранний период развития производства поливинилхлорида желатин в настоящее время в значительной мере теряет свое значение. Технический желатин, который, как известно, изготовляется из отходов мясной промышленности, характеризуется неоднородностью и непостоянством состава. Для получения достаточно устойчивой эмульсии требуемой дисперсности при суспензионной полимеризации винилхлорида в водную фазу приходится вводить не менее 0,3% желатина (т. е. в несколько раз больше, чем синтетических защитных коллоидов). Это приводит к загрязнению полученного поливинилхлорида и ухудшению его термостабильности. Поливинилхлорид, полученный с применением желатина, имеет низкуЮ пористость , а поэтому плохо совмещается с компонентами при переработке, плохо экструдируется. В некоторых случаях в промышленном производстве поливинилхлорида применяются лишь специальные сорта желатина — продукт кислого гидролиза (тип А) или продукт щелочного гидролиза (тип Б) . Эти сорта могут применяться в сочетании с синтетическими защитными колчоидами . [c.76]

    Наиболее технически важными полимерами являются полистирол (производство около 400 ООО т в год), поливинилхлорид (около 350 ООО т в год), полиэтилен (около 250 ООО т в год). Большое значение имеют также поливинилацетат и получаемые из него поливиниловый спирт и поливинилацетали, ноливинилиденхлорид, полиакрилонитрил, полиакриловая и полиметакриловая кислоты и их эфиры, полиизобутилен, поливиниловые простые эфиры, поливинилкарбазол, поливинилпирролидон, галоидопроизводные полиэтилена — политетрафторэтилен, политрифторхлорэтилен. Синтетические каучуки, являющиеся в основном сополимерами бутадиена, будут рассмотрены позднее. Ниже кратко описаны отдельные наиболее важные или интересные из перечисленных полимеров. [c.68]

    Свинцовые окислы широко используют в различных отраслях промышленности. Глет как пигмент утратил свое значение и с начала XIX в. был полностью заменен свинцовым кроном. В лакокрасочной промышленности глет используется как сырье для производства свинецсодержащих пигментов (сурика, кронов, цианамида свинца и др.) и сиккативов, представляющих собой свинцовые соли алифатических кислот (олеиновой, линолевой, абиетиновой и др.). Глет находит широкое применение в аккумуляторной промышленности. С развитием химии полимеров значительно возросла потребность в глете для производства стабилизаторов поливинилхлорида фосфатов, салицилатов и фталатов свинца. Кроме того, глет применяется в производстве керамических красок. Глет используется в качестве сырья для получения различных солей свинца, например нитрата, ацетата и др. Таким образом, практически глет всюду используется как сырье, подлежащее какой-либо переработке, что и отражается в специфических требованиях к нему как к товарному продукту. Обычные пигментные свойства (укрывистость, интенсивность, цвет) для глета не характерны, и на первый план выдвигаются требования главным образом к чистоте продукта, содержанию посторонних примесей, включая и металлический свинец. [c.340]

    Пластификаторами называют малолетучие жидкости, которые можно смешивать с твердыми смолообразными материалами для повышения их эластичности. Они являются важной составной частью многих лакокрасочных материалов, особенно на основе сложных эфиров целлюлозы. Лакокрасочная промышленность применяет сравнительно небольшую часть выпускаемых пластификаторов резкое увеличение их потребления в последнем десятилетии было вызвано значительным ростом производства поливинилхлорида, большая часть которого используется в пластифицированном виде. Значение пластификаторов наглядно видно при сравнении свойств ненластифицированного и пластифицированного поливинилхлорида. Первый представляет собой твердый, неэластичный хматернал, выпускаемый промышленностью под названием жесткий РУС. Его применяют для изготовления труб, баков и других подобных изделий. Второй является мягким и гибким материалом, используемым для самых разнообраз-ных целей — от изоляции проводов до изготовления листового материала. Как это не удивительно, но обычный плащ из поливинилхлорида содержит 3-5—40% (по массе жидкого пластификато ра). [c.316]

chem21.info

Производство поливинилхлорида и его основные свойства

Достоинства полимеризации в массе: высокая чистота полимера, его повышенные электроизоляционные свойства, прозрачность изделий.

Производство поливинилхлорида в суспензии

Большая часть ПВХ производится суспензионным методом, обеспечивающим высокое качество полимера (со сравнительно узким молекулярно-массовым распределением) и хорошее регулирование температурного режима процесса (отклонение температуры не превышает 0,5°С). Отвод теплоты реакции (91,6 кДж/моль) осуществляется через дисперсионную среду (водную фазу), в которой диспергируют жидкий ВХ в присутствии гидрофильных защитных коллоидов (стабилизаторов суспензии).

ВХ в водной фазе находится в виде отдельных капель, в которых и происходит его полимеризация. Сначала в каждой капле возникают первичные частицы, набухшие в мономере, которые по мере увеличения их числа агрегируются (слипаются). Такая картина наблюдается при конверсии ВХ до 20-30%. По мере дальнейшего расходования мономера и завершения полимеризации, образующиеся частицы начинают уплотняться с образованием пористых микроблоков, в конечном итоге превращающихся в монолитные твердые микроблоки.

Суспензионный ПВХ получают по полунепрерывной схеме: стадия полимеризации - периодический процесс, а последующие операции проводятся непрерывно. В качестве инициаторов применяют растворимые в мономере динитрил азобисизомасляной кислоты, пероксид лаурила, пероксидикарбонаты и др. Некоторые пероксидикарбонаты ускоряют процесс полимеризации ВХ в 2-3 раза. Наиболее эффективны смеси инициаторов. Стабилизаторами служат метилцеллюлоза, сополимеры винилового спирта с винилацетатом и др. Водорастворимая метилцеллюлоза с содержанием 26-32% метоксильных групп надежно защищает капли мономера от агрегирования при значительно более низких концентрациях по сравнению с другими стабилизаторами. Для обеспечения постоянного значения рН при полимеризации ВХ в систему вводят буферные добавки (водорастворимые карбонаты или фосфаты).

Температура реакции определяет молекулярную массу ПВХ, степень разветвленности макромолекул и термостабильность полимера. В определенной степени на свойства продукта влияют также рецептуры загрузки (массовые соотношения воды и мономера), степень конверсии и другие факторы.

Размеры частиц порошка полимера (до 600 мкм, обычно 75 - 150 мкм) зависят от типа применяемого стабилизатора, его количества и интенсивности перемешивания.

Поскольку рецептуры суспензионной и эмульсионной полимеризации винилхлорида близки, проведем их сравнение. Типичные рецептуры суспензионной и эмульсионной полимеризации винилхлорида приведены в табл.1.

Таблица 1. Рецептуры суспензионной и эмульсионной полимеризации винилхлорида (масс. ч) .

Технологический процесс производства ПВХ в суспензии состоит из следующих стадий: полимеризация ВХ, охлаждение и отжим суспензии, сушка порошка полимера (рис.2).

Рис.2

Схема производства поливинилхлорида в суспензии: 1 - реактор; 2 - емкость деионизированной воды; 3 - емкость раствора стабилизатора; 4 - фильтр; 5 - весовой мерник раствора инициатора; 6 - сборник винилхлорида; 7 - сборник - усреднитель; 8 - центрифуга; 9 - сушилка; 10 - бункер; 11 - узел рассева порошка; 12 - тара для порошка поливинилхлорида

Работающий под давлением реактор 1 объемом 20 - 40м3 , оснащенный мешалкой и рубашкой для обогрева и охлаждения реакционной смеси, подают определенные количества деионизированной воды из емкости 2, раствора стабилизатора из емкости 3 ( через фильтр 4) и раствора инициатора в мономере из мерника 5. Затем реактор продувают азотом и при перемешивании загружают жидкий ВХ из сборника 6. После загрузки компонентов в реактор в рубашку реактора подают горячую воду для нагрева реакционной смеси до 40 °С. Продолжительность полимеризации при

42 - 88ºС и давлении 0,5 - 1,4 МПа составляет 20 - 30 ч, конверсия мономера 80 - 90%. Окончанием процесса считают понижение давления в реакторе до 0,33-0,35МПа. Вакуум необходим для удаления из аппарата непрореагировавшего ВХ, который затем собирается в газгольдере и направляется на ректификацию. После очистки он вновь используется для полимеризации.

Суспензию образовавшегося полимера передают в сбориик - усреднитель 7, в котором ее смешивают с другими партиями, охлаждают и сливают в центрифугу непрерывного действия 8 для отделения полимера от водной фазы и промывки его водой.

Промывные воды поступают в систему очистки сточных вод. Порошок с влажностью 25 - 35%подается в сушилку 9, где его сушат горячим воздухом при 80 - 120°С до содержания влаги 0,3 - 0,5%. Затем порошок сжатым воздухом передают в бункер 10, а из него в узел рассева 11. Полученный порошок упаковывается, а непросеянная крупная фракция поступает на дополнительный размол.

Суспензионный ПВХ выпускают в виде однородного порошка белого цвета с насыпной плотностью 450-700 кг/м3 .

Молекулярная масса полимера характеризуется константой Кф (константой Фикентчера), изменяющейся для суспензионного ПВХ от 47 до 76 в зависимости от марки. Константу Кф можно вычислить из соотношения:

Кф = 1000k ;

где значение k определяют по формуле:

где

относительная вязкость раствора ПВХ при 25°С;

с - концентрация раствора (0,5 или 1г полимера в 100 мл циклогексанона или дихлорэтана).

Производство поливинилхлорида в эмульсии

Полимеризация ВХ в эмульсии так же, как и в суспензии, осуществляется в водной среде, но в присутствии ионогенных поверхностно - активных веществ (эмульгаторов) и инициаторов, растворимых в воде. К эмульгаторам относят: натриевые и калиевые соли жирных кислот (стеариновой, олеиновой и др.), соли алифатических и ароматических сульфокислот (лаурилсульфат, дибутилнафталинсульфат, додецилбензолсуьфат натрия и др.) Природа и количество эмульгатора (0,1 - 3%) оказывают существенное влияние на полимеризацию в эмульсии. В частности, с увеличением его содержания возрастает скорость процесса в 2 - 3 раза выше, чем полимеризация в суспензии и массе. Инициаторы процесса - водорастворимые пероксиды и гидропероксиды (пероксид водорода, персульфаты аммония, натрия, калия). Для снижения температуры реакции с 50 - 90ºС до 15 - 20ºС добавляют ускорители распада инициаторов: сульфат железа (II), бикарбонат, бисульфат и тиосульфат натрия, аскорбиновую кислоту и т.д.

Скорость процесса и свойства ПВХ зависят от природы и концентрации инициатора и эмульгатора, рН среды, соотношения мономер: водная фаза, температуры и других факторов. Обычно этим методом получают ПВХ с размером частиц от 0,1 до 3 мкм. Исходя из назначения полимера (для производства паст, латексов, пластмасс), выбирают соответствующую рецептуру и режим полимеризации. Типичная рецептура приведена в табл.1. Большое значение при эмульсионной полимеризации имеет рН водной фазы. Регуляторами рН служат фосфаты или карбонаты натрия. Обычно рН среды поддерживается в пределах 8 - 8,5.

Эмульсионный ПВХ содержит эмульгатор и буферные добавки, не удаляемые при промывке, и поэтому отличается от суспензионного полимера пониженными прозрачностью, диэлектрическими показателями, термостабильностью и др. Но из-за высокой скорости полимеризации и значительной дисперсности порошка этот способ полимеризации находит применение.

Эмульсионный ПВХ получают полимеризацией ВХ по периодической и непрерывной схемам. Технологический процесс производства непрерывным методом состоит из следующих стадий: полимеризация ВХ, дегазация, стабилизация и сушка латекса, рассев порошка приведены на рис 3.

В реактор 1 объемом 15-30м3 под давлением 1,0 - 1,1 МПа непрерывно поступает жидкий ВХ и водная фаза - раствор эмульгатора, регулятора рН и инициатора в деионизированной воде.

В верхней секции реактора с помощью коротколопастной мешалки (1 - 1,4 об/с) создается эмульсия мономера в воде и через рубашку осуществляется подогрев эмульсии до 40 °С.

Рис.3. Винилхлорид

Схема производства поливинилхлорида в эмульсии: 1 - реактор-автоклав; 2 - дегазатор; 3 - сборник латекса; 4,5 - аппараты для стабилизации: 6 - сушилка; 7 - циклон; 8 - рукавный фильтр; 9,10 - бункеры

По мере движения эмульсии от верхней до нижней части реактора при 40-60ºС происходит полимеризация ВХ с конверсией 90 - 92%. Продолжительность полимеризации 15 - 20ч. Полимеризация проводится либо в одном реакторе, либо в двух, соединенных последовательно.

Латекс, содержащий около 42%ПВХ, направляют в дегазатор 2, в котором под вакуумом (остаточное давление 19-21кПа) удаляют непрореагировавший растворенный ВХ (после ректификации его возвращают в производство), а затем в сборник 3. Из сборника латекс поступает сначала в аппараты 4 и 5для стабилизации ПВХ 5% водным раствором соды, а затем в распылительную сушилку 6. Сушка осуществляется горячим воздухом (160°С) подаваемым в верхнюю часть сушилки. Воздух с взвешенным порошком ПВХ (70°С) направляется в циклон 7 , где оседает основная часть порошка. Остальная его часть улавливается рукавным фильтром 8. Порошок ПВХ из бункеров 9 и 10 поступает на рассев и упаковку.

mirznanii.com


© 2005-2018, Национальный Экспертный Совет по Качеству.

Высокое качество системы сертификации Центрстройэкспертиза-Тест подтверждено ВОК



Ассоциация СРО Единство