ДОМАШНИЙ БИЗНЕС

БИЗНЕС БЕЗ ВЛОЖЕНИЙ

БИЗНЕС ДЛЯ ЖЕНЩИН

МАЛЫЙ БИЗНЕС

БИЗНЕС-ПЛАН

ИДЕИ ДЛЯ БИЗНЕСА

БИЗНЕС-СОВЕТЫ

БИЗНЕСМЕНАМ

ИНТЕРНЕТ-БИЗНЕС

Предприятия, принимающие заказы на изготовление печатных плат. Производство печатных плат


экскурсия на завод Технотех / Блог компании Madrobots / Хабр

Сегодня мы выступим в немного непривычном для себя амплуа, будем рассказывать не о гаджетах, а о технологиях, которые стоят за ними. Месяц назад мы были в Казани, где познакомились с ребятами из Навигатор-кампуса. Заодно побывали на расположенном близко (ну, относительно близко) заводе по производству печатных плат — Технотех. Этот пост — попытка разобраться в том, как же все-таки производят те самые печатные платы. Итак, как же все-таки делают печатные платы для наших любимых гаджетов?

На заводе умеют делать платы от начала и до конца — проектирование платы по вашему ТЗ, изготовление стеклотекстолита, производство односторонних и двухсторонних печатных плат, производство многослойных печатных плат, маркировка, проверка, ручная и автоматическая сборка и пайка плат. Для начала, я покажу, как делают двухсторонние платы. Их техпроцесс ничем не отличается от производства односторонних печатных плат, кроме того, что при изготовлении ОПП не производят операции на второй стороне.

О методах изготовления плат
Вообще, все методы изготовления печатных плат можно разделить на две большие категории: аддитивные(от латинского additio -прибавление) и субтрактивные (от латинского subtratio—отнимание). Примером субтрактивной технологии является всем известный ЛУТ(Лазерно-утюжная технология) и его вариации. В процессе создания печатной платы по этой технологии мы защищаем будущие дорожки на листе стеклотекстолита тонером от лазерного принтера, а затем стравливаем все ненужное в хлорном железе. В аддитивных методах проводящие дорожки, наоборот, наносятся на поверхность диэлектрика тем или иным способом. Полуаддитивные методы(иногда их еще называют комбинированными. ) — нечто среднее между классическими аддитивными и субтрактивными. В процессе производства ПП по этому методу часть проводящего покрытия может стравливаться(иногда почти сразу после нанесения), но как правило это происходит быстрее/проще/дешевле, чем в субтрактивных методах. В большинстве случаев, это следствие того, что большая часть толщины дорожек наращивается гальваникой или химическими методами, а слой, который подвергается травлению — тонкий, и служит лишь в качестве проводящего покрытия для гальванического осаждения. Я покажу именно комбинированный метод.
Изготовление двухслойных печатных плат по комбинированному позитивному методу(полуаддитивный метод)
Изготовление стеклотекстолита
Процесс начинается с изготовления фольгированного стеклотекстолита. Стеклотекстолит — это материал, состоящий из тонких листов стекловолокна(они похожи на плотную блестящую ткань), пропитанных эпоксидной смолой и спрессованных стопкой в лист. Сами полотна стекловолокна тоже не слишком просты — это плетеные(как обычная ткань в вашей рубашке) тонкие-тонкие нити обычного стекла. Они настолько тонкие, что могут легко гнуться в любых направлениях. Выглядит это примерно вот так: Увидеть ориентацию волокон можно на многострадальной картинке из википедии: В центре платы, светлые участки — это волокна идут перпендикулярно срезу, участки чуть темнее — параллельно. Или например на микрофотографии tiberius, насколько я помню из этой статьи:

Итак, начнем. Стекловолоконное полотно поступает на производство вот в таких бобинах: Оно уже пропитано частично отвержденной эпоксидной смолой — такой материал называется препрегом, от английского pre-impregnated — предварительно пропитанный. Так как смола уже частично отверждена, она уже не такая липкая, как в жидком состоянии — листы можно брать руками, совсем не опасаясь испачкаться в смоле. Смола станет жидкой только при нагреве фольги, и то лишь на несколько минут, прежде чем застыть окончательно. Нужное количество слоев вместе с медной фольгой собирается вот на этом аппарате: А вот сам рулон фольги. Далее полотно нарезается на части и поступает в пресс высотой в два человеческих роста: На фото Владимир Потапенко, начальник производства. Интересно реализована технология нагрева во время прессования: нагреваются не части пресса, а сама фольга. На обе стороны листа подается ток, который за счет сопротивления фольги нагревает лист будущего стеклотекстолита. Прессование происходит при сильно пониженном давлении, для исключения появления воздушных пузырей внутри текстолита При прессовании, за счет нагрева и давления, смола размягчается, заполняет пустоты и после полимеризации получается единый лист. Вот такой: Он нарезается на заготовки для плат специальным станком: Технотех использует два вида заготовок: 305х450 — маленькая групповая заготовка, 457х610 — большая заготовка После этого к каждому комплекту заготовок распечатывается маршрутная карта, и путешествие начинается… Маршрутная карта — это вот такая бумажка с перечнем операций, информацией о плате и штрих-кодом. Для контроля выполнения операций используется 1С 8, в которую внесена вся информация о заказах, о техпроцессе и так далее. После выполнения очередного этапа производства сканируется штрихкод на маршрутном листе и заносится в базу.

Сверловка заготовок
Первый этап производства однослойных и двухслойных печатных плат — сверление отверстий. С многослойными платами все сложнее, и я расскажу об этом позже. Заготовки с маршрутными листами поступают на участок сверловки: Из заготовок собирается пакет для сверловки. Он состоит из подложки(материал типа фанеры), от одной до трех одинаковых заготовок печатных плат и алюминиевой фольги. Фольга нужна для определения касания сверла поверхности заготовки — так станок определяет поломку сверла. Еще при каждом захвате сверла он контролирует его длину и заточку лазером. После сборки пакета он закладывается вот в этот станок: Он такой длинный, что мне пришлось сшивать эту фотку из нескольких кадров. Это швейцарский станок фирмы Posalux, точной модели, к сожалению не знаю. По характеристикам он близок вот к этому. Он ест трехразовое трехфазное питание напряжением 400В, и потребляет при работе 20 КВт. Вес станка около 8 тонн. Он может одновременно обрабатывать четыре пакета по разным программам, что в сумме дает 12 плат за цикл(естественно, что все заготовки в одном пакете будут просверлены одинаково). Цикл сверления — от 5 минут до нескольких часов, в зависимости от сложности и количества отверстий. Среднее время — около 20 минут. Всего таких станков у технотеха три штуки. Программа разрабатывается отдельно, и подгружается по сети. Все что надо сделать оператору — отсканировать штрихкод партии и заложить пакет из заготовок внутрь. Емкость инструментального магазина: 6000 сверл или фрез. Рядом стоит большой шкаф со сверлами, но оператору нет необходимости контролировать заточку каждого сверла и менять его — станок все время знает степень износа сверл — записывает себе в память сколько отверстий было просверлено каждым сверлом. При исчерпании ресурса сам меняет сверло на новое, старые сверла останется выгрузить из контейнера и отправить на повторную заточку. Вот так выглядят внутренности станка: После сверловки в маршрутном листе и базе делается отметка, а плата отправляется по этапу на следующий этап.
Очистка, активация заготовок и химическое меднение.
Хоть станок и пользуется своими «пылесосом» во время и после сверловки, поверхность платы и отверстий все равно надо очистить от загрязнений и подготовить к следующей технологической операции. Для начала, плата просто очищается в моющем растворе механическими абразивами Надписи, слева направо: «Камера зачистки щетками верх/низ», «Камера промывки», «Нейтральная зона». Плата становится чистой и блестящей: После этого в похожей установке проводится процесс активации поверхности. Для каждой поверхности вводится серийный номер Активация поверхности — это подготовка к осаждению меди на внутреннюю поверхность отверстий для создания переходных отверстий между слоями платы. Медь не может осесть на неподготовленную поверхность, поэтому плату обрабатывают специальными катализаторами на основе палладия. Палладий, в отличии от меди, легко осаждается на любую поверхность, и в дальнейшем служит центрами кристаллизации для меди. Установка активации:

После этого, последовательно проходя несколько ванн в еще одной похожей установке заготовка обзаводится тонким(меньше микрона) слоем меди в отверстиях. Дальше этот слой гальваникой наращивается до 3-5 микрон — это улучшает стойкость слоя к окислению и повреждениям.

Нанесение и экспонирование фоторезиста, удаление незасвеченных участков.
Дальше плата отправляется в участок нанесения фоторезиста. Нас туда не пустили, потому что он закрыт, и вообще, там чистая комната, поэтому ограничимся фотографиями через стекло. Нечто подобное я видел в Half-Life(я про трубы, спускающиеся с потолка): Собственно вот зеленая пленка на барабане — это и есть фоторезист. Далее, слева направо(на первой фотографии): две установки нанесения фоторезиста, дальше автоматическая и ручная рамы для засветки по заранее подготовленным фотошаблонам. В автоматической раме присутствует контроль, который учитывает допуск по совмещению с реперными точками и отверстиями. В ручной рамке маска и плата совмещаются руками. На этих же рамах экспонируется шелкография и паяльная маска. Дальше — установка проявки и отмывки плат, но так как мы туда не попали, фотографий этой части у меня нет. Но там ничего интересного — примерно такой же конвейер как в «активации», где заготовка проходит последовательно несколько ванн с разными растворами. А на переднем плане — огромный принтер, который эти самые фотошаблоны печатает: Вот плата с нанесенным, экспонированным и проявленным: Обратите внимание, фоторезист нанесен на места, на которых в дальнейшем не будет меди — маска негативная, а не позитивная, как в в ЛУТ-е или домашнем фоторезисте. Это потому, что в дальнейшем наращивание будет происходить в местах будущих дорожек. Это тоже позитивная маска: Все эти операции происходят при неактиничном освещении, спектр которого подобран таким образом, чтобы одновременно не оказывать влияния на фоторезист и давать максимальную освещенность для работы человека в данном помещении. Люблю объявления, смысл которых я не понимаю:
Гальваническая металлизация
Теперь настал через ее величества — гальванической металлизации. На самом деле, ее уже проводили на прошлом этапе, когда наращивали тонкий слой химической меди. Но теперь слой будет наращён еще больше — с 3 микрон до 25. Это уже тот слой, который проводит основной ток в переходных отверстиях. Делается это вот в таких ваннах: В которых циркулируют сложные составы электролитов: А специальный робот, повинуясь заложенной программе, таскает платы из одной ванны в другую: Один цикл меднения занимает 1 час 40 минут. В одной паллете могут обрабатываться 4 заготовки, но в ванне таких паллет может быть несколько.
Осаждение металлорезиста
Следующая операция представляет собой еще одну гальваническую металлизацию, только теперь осаждаемый материал не медь, а ПОС — припой свинец-олово. А само покрытие, по аналогии с фоторезистом называется металлорезистом. Платы устанавливаются в раму: Эта рама проходит несколько уже знакомых нам гальванических ванн: И покрывается белым слоем ПОС-а. На заднем плане видна другая плата, еще не обработанная:
Удаление фоторезиста, травление меди, удаление металлорезиста
Теперь с плат смывается фоторезист, он выполнил свою функцию. Теперь на все еще медной плате остались дорожки, покрытые металлорезистом. На этой установке происходит травление в хитром растворе, который травит медь, но не трогает металлорезист. Насколько я запомнил, он состоит из углекислого аммония, хлористого аммония и гидрооксида аммония. После травления платы выглядят вот так: Дорожки на плате — это «бутерброд» из нижнего слоя меди и верхнего слоя гальванического ПОС-а. Теперь, другим еще более хитрым раствором проводится другая операция — слой ПОС-а убирается, не затрагивая слой меди. Правда, иногда ПОС не убирается, а оплавляется в специальных печах. Или плата проходит горячее лужение(HASL-процесс) — когда она опускается в большую ванну с припоем. Сначала она покрывается канифольным флюсом: И устанавливается вот в такой автомат: Он опускает плату в ванну с припоем и тут же вытаскивает ее обратно. Потоки воздуха сдувают лишний припой, оставляя лишь тонкий слой на плате. Плата получается вот такая: Но на самом деле метод немного «варварский» и не очень действует на платы, особенно многослойные — при погружении в расплав припоя плата переносит температурный шок, что не очень хорошо действует на внутренние элементы многослойных плат и тонкие дорожки одно- и двухслойных. Гораздо лучше покрывать иммерсионным золотом или серебром. Вот тут очень хорошая информация о иммерсионных покрытиях, если кому интересно. Мы не побывали на участке иммерсионных покрытий, по банальной причине — он был закрыт, а за ключом было идти лень. А жаль.
Электротест
Дальше почти готовые платы отправляются на визуальный контроль и электротест. Электротест — это когда проверяются соединения всех контактных площадок между собой, нет ли где обрывов. Выглядит это очень забавно — станок держит плату и быстро-быстро тыкает в нее щупами. Видео этого процесса можно посмотреть у меня в инстаграме(кстати, подписаться можно там же). А в виде фото это выглядит вот так: Та большая машина слева — и есть электротест. А вот и сами щупы ближе: На видео, правда, была другая машинка — с 4 щупами, а тут их 16. Говорят, гораздо быстрее всех трех старых машинок с четырьмя щупами вместе взятых.
Нанесение паяльной маски и покрытие контактных площадок
Следующий технологический процесс — нанесение паяльной маски. То самое зеленое(ну, чаще всего зеленое. А вообще оно бывает очень разных цветов) покрытие, которое мы видим на поверхности плат. Подготовленные платы: Закладываются вот в такой автомат: Который через тонкую сеточку размазывает полужидкую маску по поверхности платы: Видео нанесения, кстати, тоже можно посмотреть в инстаграме(и подписаться тоже:) После этого, платы сушатся, пока маска перестанет липнуть, и экспонируются в той же желтой комнате, что мы видели выше. После этого, неэкспонированная маска смывается, обнажая контактные пятачки: Потом их покрывают финишным покрытием — горячим лужением или иммерсионным нанесением: И наносят маркировку — шелкографию. Это белые(чаще всего) буковки, которые показывают, где какой разъем и какой элемент тут стоит. Она может наносится по двум технологиям. В первом случае все происходит так же, как и с паяльной маской, отличается лишь цвет состава. Она закрывает всю поверхность платы, потом экспонируется, и неотвержденные ультрафиолетом участки смываются. Во втором случает ее наносит специальный принтер, печатающий хитрым эпоксидным составом: Это и дешевле, и гораздо быстрее. Военные, кстати, не жалуют этот принтер, и постоянно указывают в требованиях к своим платам, что маркировка наносится только фотополимером, что очень огорчает главного технолога.
Изготовление многослойных печатных плат по методу металлизации сквозных отверстий:
Все, что я описал выше — касается только односторонних и двухсторонних печатных плат(на заводе их, кстати, никто так не называет, все говорят ОПП и ДПП). Многослойные платы(МПП) делаются на этом же оборудовании, но немного по другой технологии.
Изготовление ядер
Ядро — это внутренний слой тонкого текстолита с медными проводниками на нем. Таких ядер в плате может быть от 1(плюс две стороны — трехслойная плата) до 20. Одно из ядер называется золотым — это означает, что оно используется в качестве реперного — того слоя, по которому выставляются все остальные. Ядра выглядят вот так: Изготавливаются они точно так же, как и обычные платы, только толщина стеклотекстолита очень мала — обычно 0,5мм. Лист получается такой тонкий, то его можно изгибать, как плотную бумагу. На его поверхность наносится медная фольга, и дальше происходят все обычные стадии — нанесение, экспонирование фоторезиста и травление. Итогом этого являются вот такие листы: После изготовления дорожки проверяются на целостность на станке, который сравнивает рисунок платы на просвет с фотошаблоном. Кроме этого, существует еще и визуальный контроль. Причем реально визуальный — сидят люди и смотрят в заготовки: Иногда какая-то из стадий контроля выносит вердикт о плохом качестве одной из заготовок(черные крестики): Этот лист плат, в которой случился дефект все равно изготовится полностью, но после нарезки бракованная плата пойдет в мусор. После того, как все слои изготовлены и проверены, наступает черед следующей технологической операции.
Сборка ядер в пакет и прессование
Это происходит в зале под названием «Участок прессования»: Ядра для платы выкладываются вот в такую стопочку: А рядом кладется карта расположения слоев: После чего в дело вступает полуавтоматическая машина прессования плат. Полуавтоматичность ее заключается в том, что оператор должен по ее команде подавать ей ядра в определенном порядке. Перекладывая их для изоляции и склеивания листами препрега: А дальше начинается магия. Автомат захватывает и переносит листы в рабочее поле: А затем совмещает их по реперным отверстиям относительно золотого слоя. Дальше заготовка поступает в горячий пресс, а после прогрева и полимеризации слоев — в холодный. После этого мы получаем такой же лист стеклотекстолита, который ничем не отличается от заготовок для двухслойных печатных плат. Но внутри у него доброе сердце несколько ядер со сформированными дорожками, которые, правда, еще никак не связаны между собой и разделены изолирующими слоями полимеризированного препрега. Дальше процесс проходит те же стадии, что я уже описывал ранее. Правда, за небольшим различием.
Сверловка заготовок
При сборке пакета ОПП и ДПП для сверловки его не нужно центровать, и его можно собирать с некоторым допуском — все равно это первая технологическая операция, и все остальные будут ориентироваться на нее. А вот при сборке пакета многослойных печатных плат очень важно привязаться к внутренним слоям — при сверловке отверстие должно пройти насквозь все внутренние контакты ядер, соединив их в экстазе при металлизации. Поэтому пакет собирается вот на такой машинке: Это рентгеновский сверлильный станок, который видит сквозь текстолит внутренние металлически реперные метки и по их расположению сверлит базовые отверстия, в которые вставляются крепежи для установки пакета в сверлильный станок.
Металлизация
Дальше все просто — заготовки сверлятся, очищаются, активируются и металлизируются. Металлизация отверстия связывает между собой все медные пяточки внутри печатной платы: Таким образом, завершая электронную схему внутренностей печатной платы.
Проверка и шлифы
Дальше от каждой платы отрезается кусочек, который шлифуется и рассматривается в микроскоп, для того, чтобы удостовериться, что все отверстия получились нормально. Эти кусочки называются шлифы — поперечно срезанные части печатной платы, которые позволяет оценить качество платы в целом и толщину медного слоя в центральных слоях и переходных отверстиях. В данном случае, под шлиф пускают не отдельную плату, а специально сделанные с краю платы весь набор диаметров переходных отверстий, которые используются в заказе. Шлиф, залитый в прозрачный пластик выглядит вот так:
Фрезеровка или скрайбирование
Далее платы, которые находятся на групповой заготовке необходимо разделить на несколько частей. Делается это либо на фрезерном станке: Который фрезой вырезает нужный контур. Другой вариант — скрайбирование, это когда контур платы не вырезается, а надрезается круглым ножом. Это быстрее и дешевле, но позволяет делать только прямоугольные платы, без сложных контуров и внутренних вырезов. Вот скрайбированная плата: А вот фрезерованная: Если заказывалось только изготовление плат, то на этом все заканчивается — платы складывают в стопочку: Оборачивается все тем же маршрутным листом: И ждет отправки. А если нужна сборка и запайка, то впереди есть еще кое-что интересное.
Сборка
Дальше плата, если это необходимо поступает на участок сборки, где на нее напаиваются нужные компоненты. Если мы говорим о ручной сборке — то все понятно, сидят люди(кстати, в большинстве своем женщины, когда я к ним зашел, у меня уши в трубочку свернулись от песни из магнитофона «Боже, какой мужчина»): И собирают, собирают: А вот если говорить о автоматической сборке, то там все гораздо интереснее. Происходит это вот на такой длинной 10-метровой установке, которая делает все — от нанесения паяльной пасты до пайки по термопрофилям. Кстати, все серьёзно. Там заземлены даже коврики: Как я говорил, начинается все с того, что на неразрезанный лист с печатными платами устанавливают вместе с металлическим шаблоном в начало станка. На шаблон густо намазывается паяльная паста, и ракельный нож проходя сверху оставляет точно отмерянные количества пасты в углублениях шаблона. Шаблон поднимается, и паяльная паста оказывается в нужных местах на плате. Кассеты с компонентами устанавливаются в отсеки: Каждый компонент заводится в соответствующую ему кассету: Компьютеру, управляющему станком, говорится где какой компонент находится: И он начинает расставлять компоненты на плате. Выглядит это вот так(видео не мое). Можно смотреть вечно: Аппарат установки компонентов называется Yamaha YS100 и способен устанавливать 25000 компонентов в час(на один тратится 0.14 секунды). Дальше плата проходит горячую и холодные зоны печки(холодная — это значит «всего» 140°С, по сравнению с 300°С в горячей части). Побыв строго определенное время в каждой зоне со строго определенной температурой, паяльная паста плавится, образуя одно целое с ножками элементов и печатной платой: Запаянный лист плат выглядит вот так: Все. Плата разрезается, если нужно и упаковывается, чтобы вскоре уехать к заказчику:
Примеры
Напоследок, примеры того, что технотех может делать. Например, конструирование и изготовление многослойных плат(до 20 слоев), включая платы для BGA компонентов и HDI платы: C со всеми «номерными» военными приемками(да, на каждой плате вручную ставится номер и дата изготовления — этого требуют военные): Проектирование, изготовления и сборка плат практически любой сложности, из своих или из компонентов заказчика: И ВЧ, СВЧ, платы с металлизированным торцом и металлическим основанием(фотографий этого я не сделал, к сожалению). Конечно, они не конкурент резониту в плане быстрых прототипов плат, но если у вас от 5 штук, рекомендую запросить у них стоимость изготовления — они очень хотят работать с гражданскими заказами.

И все-таки, в России производство еще есть. Что бы там не говорили.

Напоследок можно отдышаться, поднять глаза на потолок и попытаться разобраться в хитросплетениях труб:

Что почитать?
Субтрактивный комбинированный позитивный метод в домашних условиях ДПП в картинкахНесколько разных технологий изготовления ДПП и МПППроизводство в фотографиях(правда, без описания)

habr.com

Производство печатных плат, как бизнес: с чего начать?

Производство печатных плат– бизнес, который имеет рентабельность в абсолютно любой стране, так как в создании электронного оборудования без данного компонента никак не обойтись.

Народные умельцы могут производить такие элементы даже в домашних условиях! Технология производства плат не состоит из непосильных для простого человека этапов, а большинство компонентов легко найти на радиорынках или специализированных площадках в интернете.

Платы заводского образца имеют больший спрос, но для их производства необходимо соответствующее оборудование и соблюдение четкой инструкции по сборке.

В сегодняшней статье мы расскажем подробнее о домашнем и заводском производстве, а также и поможем вам сориентироваться в приблизительной стоимости такого бизнеса вообще.

Что такое печатные платы?

Современные гаджеты не представляют своего существования без такого компонента, как печатная плата. Заготовка представляет из себя пластинку с диэлектрического материала, которая содержит цепи, проводящие электрический ток.

Располагаться такие «жилки» могут либо на самой поверхности диэлектрика, либо же бывают внедрены во внутреннюю часть основы печатной платы.

Назначение плат – объединение компонентов электронных устройств в единую сеть. Они проводят электричество и соединяют элементы гаджета в цельную механическую структуру. Выводы на концах плат крепятся один к одному при помощи пайки.

Из чего состоит печатная плата:

• диэлектрический материал, лежащий в основании;
• рисунок из фольги, выполняющий функцию электрического проводника;
• специальные отверстия для монтажа;
• контактные площадки, объединяющие планарные элементы печатной платы;
• паяльная маска, выполняющая роль защитного покрытия;
• маркировка (в промышленном производстве).

Если производство платы происходило на домашнем оборудовании для личных целей, некоторые компоненты конструкции могут быть из этого списка изъяты.

Классификация плат для печати зависит от таких факторов, как температурный порог использования и отрасль применения.

Классификация печатных плат по количеству слоев:

  • Односторонняя – покрытие из фольги для диэлектрика наносится лишь на одну сторону.
  • Двухсторонние – покрытие из фольги для диэлектрика наносится на две стороны печатной платы.
  • Многослойные – диэлектрическая основа имеет несколько слоев, на каждом из которых располагается покрытие из фольги.

При производстве различных электронных устройств могут возникать проблемы с функциональностью самой основы. Слишком хрупкий диэлектрик становится проблемой в смартфонах с гибким дисплеем, а работа типичной платы в условиях повышенных температур приводит к ее плавке и, соответственно, выходу из строя.

Увеличивающейся ассортимент продукции повлек за собой появление новых решений по реализации компонентов. Это заставило производство печатных плат внедрить еще одну классификацию на основании свойств материала диэлектрической основы. В технической литературе появились такие термины, как жесткие и гибкие платы для печати.

Существуют также отдельные технологические решения, учитывающие особенности применения плат для печати (высокая/низкая частота, температура и тому подобное).

Официальная документация по производству печатных плат состоит из 5 нормативных документов, перечень которых можете увидеть на рисунке:

Пошаговое производство печатных плат

Сразу оговорим, что массовое производство печатных плат в домашних условиях организовать практически нереально, да и оборудование для этого варианта, как таковое, не существует.

Если у вас в голове зародилась мысль заняться серьезным бизнесом в этой отрасли, будьте готовы к масштабному производству и выходу на рынок всей страны. Именно страны, так как найти достаточное количество заказчиков даже в крупном городе России нельзя – дело будет попросту нерентабельным.

1. Технология производства печатных плат.

Технологический процесс производства печатных плат содержит в себе четыре основных этапа, каждый из которых подразделяется на более локальные задачи, требующие дорогостоящего оборудования и подготовленного места.

Перед началом производства стоит побеспокоиться о подготовке материалов и оборудования. Список всех необходимого «сырья» для производства печатных плат подан в таблице ниже. В расчет бралась классификация на основании количества слоев.

Материалы для производства печатных плат:

1) Материалы для изготовления одно и двусторонних печатных плат
НазваниеМаркаТолщина
Гетинакс фольгированныйГФ-1-35; ГФ-1-50; ГФ-2-35; ГФ-2-50; ГФ-1-35Г; ГФ-1-50Г; ГФ-2-35Г; ГФ-2-50Г1...3
Фольгированный гетинакс общего назначенияГОФ-1-35Г; ГОФ-2-35Г; ГОФВ-1-35Г; ГОФВ-2-35Г1...3
Фольгированный стеклотекстолитСФ-1-35; СФ-2-35; СФ-1-50; СФ-2-50; СФ-1-35Г; СФ-2-35Г; СФ-1-50Г; СФ-2-50Г; СФ-1Н-35; СФ-2Н-35; СФ-1Н-50; СФ-2Н-50; СФ-1Н-35Г; СФ-2Н-35Г; СФ-1Н-50Г; СФ-2Н-50Г;0.5...3
Стеклотекстолит фольгированный повышенной нагрев стойкостиСФПН-1-50; СФПН-2-500.5...3
Диэлектрик фольгированный гальвано стойкийФДГ-1; ФДГ-20.5...3
2) Материалы для изготовления печатных плат повышенной плотности монтажа
НазваниеМаркаТолщина
Материалы для полу аддитивной технологииСТЭФ-1-2ЛК1.0; 2.0
Стеклотекстолит листовой с адгезивным слоемСТЭК1.0; 1.5; 2.0
Диэлектрик фольгированный для уплотненного монтажаСЛОФАДИТ0.5; 0.8; 1.0; 1.5; 2.0; 2.5; 3.0
Стеклотекстолит теплостойкий с алюминиевым протекторомСТПА-5-1; СТПА-5-20.1; 0,12; 0.13; 0.16; 0.2; 0.25; 0.3; 0.35; 0,5; 0,8; 1.0; 1.5; 2.0
3) Материалы для изготовления многослойных печатных плат
НазваниеМаркаТолщина
Стеклотекстолит фольгированный травящийсяФТС-1-20АО; ФТС-2-20АО; ФТС-1-20А; ФТС-2-20А; ФТС-1-20Б; ФТС-2-20Б0.08; 0.15; 0.16; 0.27; 0.5
ФТС-1-35Б; ФТС-2-35Б0.1; 0.12; 0.14; 0.23; 0.25
ФТС-1-35АО; ФТС-2-35АО; ФТС-1-35А; ФТС-2-35А;0.1; 0.19; 0.14; 0.23; 0.1; 0.12; 0.14; 0.23
Стеклотекстолит теплостойкий фольгированныйСТФ-10.1; 0.12; 0.13; 0.15; 0.2; 0.25; 0.35; 0.5; 0.8; 1.0; 1.5; 2.0; 2.5
СТФ-20.25; 0.35; 0.5; 0.8; 1.0; 1.5; 2.0; 3.0
Диэлектрики фольгированные серии «Д»ДФС-1; ДФС-20.06; 0.08; 0.01; 0.13; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5
Стеклотекстолит, фольгированный гальвано стойкий и теплостойкийСФ-200-1; СФ-200-2; СФГ-200-1; СФГ-200-20.8; 1.0; 1.5; 2.0
Диэлектрик фольгированный гальвано стойкий и теплостойкийСФГ- 230-1-35; СФГ-230-2-35;0.13; 0.2; 0.25; 0.5; 0.8; 1.0
СФГ-230-1-150; СФГ-230-2-500.25; 0.5; 0.8; 1.0; 1.5; 2.0; 2.5
Стеклотекстолит общего назначенияСОФ-10.8; 1.0; 1.5; 2.0; 2.5; 3.0
СОФ-20.2; 0.25; 0.8; 1.0; 1.5; 2.0; 2.5
Стеклотекстолит общего назначения негорючийСОНФ-11.5; 2.0; 2.5; 3.0
СОНФ-20.35; 0.5; 0.8; 1.0; 1.5; 2.0; 3.0

Поданный список наиболее полный и подойдет на любой комплект оборудования.

Когда все необходимое закуплено, можно начинать сам процесс производства.

Существует два метода изготовления плат – субтрактивный и аддитивный. В первом случае, рисунок основы формируется через удаление излишек фольги, а во втором – меднением сквозь предварительно подготовленную маску (химический метод).

При промышленном производстве использование аддитивного подхода менее целесообразно с финансовой точки зрения – оборудование и сырье обойдутся предпринимателю в разы дороже. Потому 90% точек изготовления специализируются исключительно на субтрактивном методе производства печатных плат.

А теперь давайте более детально рассмотрим все этапы производства печатных плат – нюансы изготовления + оборудование, на котором компонент приобретает свой товарный вид.

2. Формирование заготовки платы для печати.

Заготовка формируется из фольгированного диэлектрического материала. Диэлектриком в промышленном производстве выступает стеклотекстолит (90% случаев) или текстолит с основой из ткани или бумаги.

Подбор толщины заготовки исходит из самих требований в заказе – чем выше прочность и электрическая проводимость, тем толще основа. При нецелевом производстве используется усредненный показатель толщины – оборудование настраивается на 13-14 миллиметров.

Схема формирования заготовки:

  1. Вырезать на оборудовании необходимую форму.
  2. Подготовить листы алюминиевой фольги.
  3. Нанести на вырезанную заготовку фольгу. Толщина нанесения зависит от целей, в которых будет использоваться плата.

Отдельную производственную группу составляют алюминиевые платы для печати – применяются они в осветительном оборудовании, когда для функционирования компонента необходимо получить проводимость через всю поверхность платы.

Алюминиевые платы делятся на два типа:

  • С внешним оксидированием – сплошной оксидированный алюминиевый лист, по периметру которого располагается фольга из меди. Могут применяться и другие металлы, но для их использования требуется предварительное нанесение тонкого слоя диэлектрика.
  • Полное оксидирование – рисунок оборудованием внедряется в саму основу материала, потому обработка приходится на большую часть глубины заготовки. Точное значение рассчитывается оборудованием по заданному системой шаблону.

На практике, к более экономному типу производства относится первый метод. Предприниматель сокращает затраты времени на 50-70% + не покупает дополнительные модули на оборудование.

3. Нанесение рисунка проводников платы.

Самый трудоемкий этап производства, требующий больших капиталовложений во вспомогательное сырье и оборудование.

Чтобы получить рисунок печатной платы, используют один из 3-х способов, либо их комбинацию.

Способы нанесения рисунка для проведения тока:

  1. Химический.

    Включает в себя два этапа – добавление маски на заготовку с фольгированным слоем и удаление излишков путем бомбардирования химическими частичками. Из оборудования вам здесь понадобится фоторезист, фотошаблон и источник ультрафиолетового излучения.

    Фоторезистом (жидким или пленочным) заполняют всю поверхность заготовки, а потом через шаблон просвечивают ультрафиолетом дорожки электрического проводника.

    Незащищенную площадь промывают химическим раствором (хлорное железо или медный купорос), после чего слой фольги снимается и остается лишь электропроводящий рисунок.

  2. Механический.

    Для реализации требуется специальное оборудование механического воздействия, которое сможет по шаблону удалить ненужные площади фольги на поверхности заготовки.

  3. Лазерный.

    Ранее, данный способ практически не использовался из-за повышенных отражающих свойств меди и алюминия. Но прогресс не стоит на месте, и в 2018 году лазерное оборудование может более тонко настраивать длину волны, что позволяет применять установки даже на поверхностях с высокими параметрами отражения.

В промышленном производстве наиболее популярным был и остается способ нанесения рисунка с использованием механического оборудования. Предпринимателю не нужно беспокоиться о массе дополнительных средств, которые требуются при химической гравировке, а использование лазерного оборудования – слишком дорогое удовольствие.

Нанесение рисунка – это только первый шаг в обработке заготовки печатной платы. Далее, элемент проходит еще четыре промежуточных технологических этапа, пока не приобретает необходимый вид.

Этап №1. Металлизация отверстий печатных плат.

Отверстия пробиваются специальным механическим или лазерным оборудованием. Второй вариант используется для более тонкой работы, когда реализовать действие при помощи механической обработки нереально с физической точки зрения.

Сама металлизация может проходит двумя путями:

  1. Механически.

    Для реализации необходимо высокоточное оборудование (для промышленного производства) и материал (электропроводящий клей или заклепки).

    Данный метод очень дорогой в использовании, потому применяется лишь выборочно – для высокоточных печатных плат, либо при металлизации в домашних условиях.

  2. Химически.

    Отверстия металлизируются путем осадочного накопления на заготовке меди. Данный процесс предшествует непосредственному нанесению рисунка на саму форму.

Второй метод легко реализовать в промышленном производстве, но для домашнего использования он применяется крайне редко из-за обилия технологических нюансов и длительности.

Этап №2. Прессование плат для печати.

Используется лишь для многослойных печатных плат, которые содержат в себе более одного слоя.

Данный процесс предшествует металлизации отверстий, так как прессование уже готовых заготовок может повредить внешний слой изоляции и самих кроплений меди.

Схема прессования плат для печати в промышленном производстве:

1. Подготовка слоев, которые будут располагаться в середине и нанесение рисунка.
2. Прессование плат в печи под давлением – в качестве прокладок используются так называемые препреги.
3. Сверление отверстий.
4. Металлизация.
5. Травление фольги внешних слоев.

Переходные отверстия могут формироваться и до прессования. Тогда, функционал печатных плат расширяется, но и стоимость производства увеличивается на 30-40%.

Использование «заглушек» требует от предпринимателя поиска разумного компромисса между рентабельностью производства и стоимостью самого процесса изготовления, включая стоимость оборудования.

Этап №3. Нанесение покрытия.

Необходимый технологический этап производства, без которого печатные платы могут с легкостью поддаваться механическим повреждениям.

Вариации покрытия плат для печати:

  • Лаковые. Имеют не только защитную функцию, но и декоративную. Зеленое покрытие платы– это привычный цвет этого компонента электроники для большинства людей.
  • Маркировка. Совмещает в себе декоративную функцию с информационной. Используется при производстве в больших промышленных масштабах и наносится при помощи шелкографии. Иногда может использоваться лазерное или струйное оборудование.
  • Лужение проводников. Дополнительный слой, наносящийся поверх основного слоя меди на поверхности заготовки. Реализация происходит химическим методом – через ванну с припоем. Достоинство – высокая степень защиты. Недостаток – толщина заготовки, снижающая ее монтажные свойства.
  • Покрытие инертными металлами. В качестве материала используется олово, палладий, реже платина и золото.
  • Лакировка токопроводящим раствором. Увеличивает проводящие свойства заготовки печатной платы.

Когда платы уже монтированы, производство может дополняться еще одним защитным слоем, уменьшающим влияние внешней среды на функционал печатной платы.

Этап №4. Механическая обработка заготовки платы для печати.

Промышленное производство подразумевает изготовление множество копий печатных плат на едином листе диэлектрика.

Все описанные выше этапы лист проходит, как единое целое. Разделение на отдельные элементы происходит в самом конце процесса, с помощью специального механического оборудования.

Схема механической обработки плат для печати:

  1. Частичная или полная фрезеровка, в зависимости от формы платы. Для плат правильных форм (прямоугольник, квадрат) фреза делает небольшие канавки, облегчающие разламывание элементов в дальнейшем, а при неправильных формах оборудование делает сквозные линии, оставляя небольшие соединительные мосты для скрепления плат.
  2. Просверливание отверстий для крепежа печатной платы – количество и диаметр отверстий зависит от шаблона, по которому работает оборудование на производстве.
  3. Окончательное разделение плат на отдельные элементы.

Все тонкости по механической обработке печатных плат на производстве можно найти в ГОСТ 23665-79, где описаны основные рекомендации и требования к механической обработке контура и не только.

На этом производство заготовки печатной платы окончено. Однако, товар еще нельзя считать готовым. Впереди его ожидает оснащение вспомогательными микросхемами и тестирование на работоспособность.

4. Монтаж компонентов.

В основном, к «телу» все детали платы крепятся при помощи пайки. При массовом производстве используется специализированное оборудование, которое применяет групповой способ пайки.

На автоматизированном производстве ручное крепление не встречается вообще, так как использование сотрудников вместо оборудования не является оптимальным подходом к производству. Платить зарплату одному оператору автоматизированной установке намного проще, нежели целому цеху работников.

Выделяют два метода пайки:

Волновой.Используется для выводных элементов печатных плат. Инструментом служат активаторы на механической основе, создающие одну сплошную полосу для пайки.

Оборудование проводит группу плат над волной нижней стороной – пайка схватывается моментально благодаря нанесенному заранее флюсу.

Пайка через печь.Планарный метод пайки, при котором изначально на поверхность платы наносится специальная паяльная паста. Затем устанавливается сам компонент, и заготовка отправляется в печь, где порошок в пасте активизируется и намертво припаивается к самому элементу.

Если компонент тяжелый, его садят на пару капель паяльного клея.

По завершению пайки для очистки остатков паяльных веществ и других сопутствующих производству загрязнений на поверхность наносят растворители.

Финальный шаг – плата покрывается защитными растворами, что быстро схватываются – лак, гидрофобизаторы и тому подобное. Если планируется ее эксплуатация в условиях с повышенной вибрацией, заготовку заливают компаундом высокой вязкости.

5. Тестирование продукта.

В производстве существует несколько методик тестирования функциональности плат. Среди основных – электрические и оптические тесты.

В первом случае прослеживается наличие замыканий в системе и общая целостность электрической цепи. Оптические тесты же указывают на механические недочеты, которые могли быть допущены на различных этапах сборки.

Для оптического тестирования камеры с высоким разрешением размещают:

  • при формировании рисунка на заготовке и нанесении самого контура с отверстиями;
  • при пайке, а именно – на этапах дозировки паяльной пасты;
  • при монтаже вспомогательных компонентов на саму заготовку;
  • на выходе с паяльного оборудования – осуществляется проверка на правильность крепления элементов.

При оптическом исследовании выявляются такие дефекты, как смещение, коробление, избыток или недостаток паяльного материала, из-за чего крепление может оторваться при перенесении повышенных нагрузок.

И, как в каждом бизнесе, если вы новичок и не в курсе всех технологических особенностей производства печатных плат, то можете с легкостью допустить ошибки. Тем более, учитывая сложность самого производства, их количество может быть достаточно велико.

Типичные технологические ошибки при производстве:

  1. Неточный подбор диаметров отверстий для крепления компонентов. При расчетах теряется такой сопутствующий фактор производства, как металлизация. Из-за ее применения просвет уменьшится на 5-7%, потому будущий монтаж навесных компонентов будет либо сильно усложнён, либо невозможен вообще.
  2. Отсутствие припуска на контур. На окончательном этапе производства при обработке на механическом оборудовании габариты элемента могут уменьшаться на 2-3% (канавки для разрезания листа и другие операции). Если данный параметр вычислить неточно, размер вашей платы будет отличаться от желаемого в большую или меньшую сторону.
  3. Отклонения при распределении дорожек и точек для пайки. Такие отклонения могут увеличить вероятность коробления после температурной обработки в печах.
  4. Перенасыщение меди в точке пайки может привести к плохой заливке контакта, так как данный металл обладает хорошими теплоотводимыми свойствами. Чтобы избежать такой проблемы, вокруг точек монтажа следует оставлять небольшой термический зазор.
  5. Платы, которые будут лакироваться, должны заранее предоставлять информацию о компонентах, которые данной обработке не подлежат. При попадании лака на разъемы и другие чувствительные компоненты, плата становится непригодной к использованию, тем самым увеличивая процент брака с производства.

Представленные ошибки типичны, но не единственные в своем роде. Перед началом бизнеса в данной сфере вам следует очень детально изучите технологию изготовления, и определиться с направлениями в производстве.

Для каждой отрасли есть свои особенности, без учета которых количество брака продукции будет выходить за рамки 10-15%, что очень сильно ударит по карману предпринимателя.

6. Оборудование для производства печатных плат.

В 2018 году выбор оборудования по производству печатных плат очень широкий. Начинающие предприниматели могут пойти двумя путями – купить новое оборудование или поддержанное.

В первом случае, вам придется выложить кругленькую сумму, но вы получите производственные гарантии на 1-2 года + бесплатное техническое обслуживание и настройку. Новый комплект оборудования способен проработать в две смены до 10 лет с минимальными перебоями.

Второй вариант позволяет сэкономить на оборудовании до 150% от требуемого капитала, но всегда есть риск нарваться на производственное оснащение, которое на вид вроде и новое, но при постоянной нагрузке не протянет более 1 месяца.

Затраты на ремонт могут превышать половину стоимости подержанного оборудования, потому относиться к варианту закупки подержанной техники стоит с особой осторожностью.

Как минимум, требуйте от продавца предоставление гарантий на 6-10 месяцев – этого времени хватит, чтобы отбить его стоимость и накопить на новое, если с подержанным что-либо случится.

Полный список оборудования для производства плат мы подали в виде таблицы. Все цены усредненные и могут колебаться с порогом 10-15% от указанных.

Технологический процессОборудование для производства печатных платКол-воЦенаИтого:64 000$
1) Участок механической обработки
Нарезание заготовок из листовУстановка нарезания110 000$
Расштифтование пакетаРасштифтование1
Сверлильный станок с ЧПУ, одно шпиндельныйСтанок с ЧПУ1
Оконтуривание/фрезерование, одно шпиндельный станок с ЧПУСтанок с ЧПУ1
2) Участок мокрых процессов
Подготовка поверхности заготовкиУстановка химической очистки112 000$
Оксидное покрытие поверхностиУстановка оксидирования1
Удаление засмаливания в отверстияхЛиния DeSmear1
Щеточная зачистка + прочистка отверстий под давлениемУстановка щеточной зачистки1
Химическое меднениеЛиния химического меднения1
Проявление сухого пленочного фоторезистаУстановка проявления1
Гальваническое покрытие медь/оловоГальваническая линия1
Снятие сухого пленочного фоторезистаЛиния снятия СПФ1
Удаление металлорезиста (олова)Линия удаления олова1
ПроявлениеЛиния проявления1
3) Жёлтая комната
Ламинирование сухим плёночным резистом.Вальцованный ламинатор12 000$
Экспонирование сухого плёночного фоторезистаУст-ка УФ эксперт 8 кВт1
4) Участок трафаретной печати
Трафаретная печатьТрафаретный принтер16 000$
Нанесение надписей на платуТрафаретный принтер1
Промывание трафаретовУстановка промывки1
Сушка трафаретовШкаф сушки1
Заточка ракелейЗаточная установка1
Натяжение трафаретаУстановка натяжения1
Сушка трафаретовСушильный шкаф1
5) Участок контроля качества
Автоматическая оптическая инспекция-АОИУстановка АОИ12 000$
Электрическая проверка платыТестер "летающий зонд"1
6) Нанесение финишного покрытия
Предварительная очистка платыУстановка очистки18 000$
Покрытие оловом – горячее лужениеУстановка горячего лужения1
Отмывка платы после луженияУстановка отмывки1
Покрытие хим. никель/золотоПогружная линия1
Очистка ультразвукомУстановка очистки
7) Участок прессования
Пробивка координатных отверстий в слояхСтанок для пробивки124 000$
Сушка внутренних слоёвСушильный шкаф1
Пакетирование/штифтованиеУстановка пакетирования1
Прессование слоёвПресс1
Водяное охлаждениеСистема охлаждения воды1

Поданный комплект оборудования является наиболее полным и направлен на долгосрочное производство плат для печати. Если вы планируете постепенно расширять свой бизнес, то минимальная сумма, на которую стоит рассчитывать, – от 30 000$.

Изготовление печатных плат промышленным способом.

Что такое печатная плата? Предназначение устройства.

7. Помещение, персонал, вложения и окупаемость.

Оборудование – не единственная статья расходов, которую понесёт предприниматель, работая в сфере производства электронных компонентов. Немаловажным условием успеха является аренда помещения, соответствующего ГОСТам и общепринятым стандартам в этой отрасли.

Далеко не каждое помещение может быть использовано для производства.

Сам цех будет состоять из 2-х отделов – складского и производственного. Объем первого зависит от выработки вашего производства, а во втором случае минимальная площадь составляет не менее 75 кв. м.

Другие требования к помещению для производства:

  • Качественная линия электрического питания, поддерживающая проводимость в 220 и 380 вольт.
  • Вытяжка промышленной конструкции. Если обработка деталей происходит, преимущественно, химическими методами, отводящих труб может понадобиться более одной штуки.
  • Оборудование для развода и поступления воздуха в сжатом виде.
  • Водопровод может подойти и общего пользования. Для деминерализации жидкости устанавливается отдельное оборудование. Приготовление растворов на основании водопроводной воды не будет соответствовать технологическим нормам.

Не забывайте также, что производство печатных плат подразумевает использование химических растворов, для которых просто необходим отдельный сток.

Чтобы наладить производство в две смены при условии полной автоматизации оборудования, вам будет достаточно иметь в своем штате сотрудников четырёх операторов-универсалов, которые станут прослеживать и контролировать автоматизированный процесс производства плат для печати.

В список временного персонала входят секретарь, грузчик, маркетолог и другие специальности, услуги которых на постоянной основе частному предпринимателю попросту не пригодятся. Их наем происходит время от времени и оплачивается, как подработка.

Если дела идут в гору и у вас появляется возможность наладить производство печатных плат через дочерние отделения, стоимость таких объектов обойдется вам даже выше, нежели центрального. Всё потому, что помимо оборудования и помещения придется нанимать большее количество персонала, и делать это на постоянной основе.

Куда можно сбывать продукцию:

  • электронная начинка в автомобильном производстве;
  • начинка медицинского оборудования;
  • отрасли, связанные с компьютерной техникой;
  • крупная и мелкая бытовая техника + измерительные приборы.

Общая стоимость открытия бизнеса – не менее 75 000$. Сюда входят расходы на материалы, зарплата сотрудникам, оборудование, аренда помещений, маркетинговая кампания и дополнительные затраты при реализации.

Средняя окупаемость одной линии производства печатных плат находится на уровне 24-30 месяцев, при условии, что в вашем финансовом плане предусмотрены дополнительные статьи расходов (ремонт, обслуживание оборудования и тому подобное).

Производство печатных плат – бизнес с высокой рентабельностью, но с длительным сроком окупаемости. Не каждый готов ждать более 2-х лет, чтобы отбить собственные деньги. Однако, если дело будет иметь успех + потенциал к расширению, вы сможете сократить данный срок вдвое, а дальнейшая прибыль будет расти ежемесячно.

Полезная статья? Не пропустите новые!Введите e-mail и получайте новые статьи на почту

biznesprost.com

Предприятия, принимающие заказы на изготовление печатных плат

Поставщики и производители

Наука и образование

Литература и нормативные документы

Главная » Поставщики и производители » Предприятия, принимающие заказы на изготовление печатных плат

-1

Город - Город - Shenzhen,China (1)Балашиха (1)Горки Ленинские (1)Дубна (1)Ижевск (2)Йошкар-Ола (1)Москва (12)Новосибирск (1)Рязань (1)Санкт-Петербург (19)Чебоксары (1)Челябинск (1)

Apex PCB

Гибкие печатные платы, гибко-жесткие печатные платы, печатные платы с металлическим основанием, СВЧ-платы, «композитные» печатные платы (на одной печатной плате используются разные материалы, например, FR4 и Rogers).

Санкт-Петербург +7 (812) 309-75-25 194156, г. Санкт-Петербург, пр. Энгельса д.27, лит. Ц, офис 47. [email protected] www.apexpcb.ru
HX Circuit Technology Co,.Ltd

Производство печатных плат?поставка pcb, PCB

Shenzhen,China [email protected] www.hx-circuit.com
PCB technology

Проектирование, изготовление и монтаж многослойных печатных плат

Москва +7 (499) 558-02-54, доб. 109 Москва, 105082, ул. Б. Почтовая, д. 26В, строение 2, оф. 406 [email protected] www.pcbtech.ru
А-Контакт

А-КОНТРАКТ предлагает изготовление всех видов печатных плат: любая сложность проекта, любой класс точности, в том числе 5-ый, опытные образцы, крупносерийное производство в промышленных условиях

Санкт-Петербург +7 (812) 703-00-55 197376, Россия, г. Санкт-Петербург, Аптекарский проспект, дом 6, офис 708 www.a-contract.ru
АВИВ Групп

Изготовление печатных плат, монтаж печатных плат, разработка электроники,

Москва +7 (495) 666-44-78 109240, г. Москва, ул. Николоямская, д. 16/2, кор. 7 www.aviv-group.ru
Аксион-холдинг, ОАО. Ижевский мотозавод

Современное многопрофильное стратегическое приборостроительное предприятие оборонно-промышленного комплекса страны, обладающее передовыми технологиями, позволяющими создавать высокотехнологичные изделия, отвечающие требованиям рыночной экономики.

Ижевск (3412) 77-77-87 426000, Россия, Удмуртская Республика, г. Ижевск, ул. М. Горького, 90 www.axion.ru
Вектор Технология

Проектирование печатных плат, подготовка производства, опытное производство печатных плат, серийное производство печатных плат.

Санкт-Петербург +7 (812) 740-49-17 197101, г. Санкт-Петербург, ул. Чапаева д. 17 [email protected] www.vectort.ru
Вектор Технолоджи ООО

Печатные платы(printed circuit boards)- односторонние (ОПП), двухсторонние (ДПП), многослойные (МПП), платы на алюминиевом основании, опытное и серийное производство

Санкт-Петербург +7 (812) 329-3801 Россия, 194044, Санкт-Петербург ул.Чугунная д.20 [email protected] www.vectech.spb.ru
Государственный Рязанский приборный завод

Жесткие, гибкие и гибко-жесткие печатные платы (ПП), платы с теплоотводящими слоями на основе алюминия, СВЧ-платы, платы с "глухими" и "запечатанными" отверстиями, платы с золочением поверхности и контактов разъемов, платы с технологией послойного наращивания.

Рязань +7 (4912) 217-837 390000, Россия, г. Рязань, ул. Семинарская, 32 www.grpz.ru
Гранд РСВ

Компания выполняет полный цикл работ – от проектирования до изготовления опытного образца и выпуска конструкторской документации для серийного производства.

Санкт-Петербург +7 (812) 339-61-91 Санкт-Петербург, Цветочная улица, д. 6 [email protected] www.grand-pcb.ru
Группа МЕТТАТРОН

Изготовление и поставка печатных плат из Китая

Москва +7 (495) 925-51-27 125430, Москва, ул. Фабричная, д.6, Фабрика «Победа труда» [email protected] www.mettatron.ru
Импульс, НПО

НПО «Импульс» - одна из основных организаций России по созданию новейших автоматизированных систем управления (АСУ) для ВС РФ и РВСН. Основная продукция - Гособоронзаказ.

Санкт-Петербург +7 (812) 530-92-52 195220, г. Санкт-Петербург, ул. Обручевых, д. 1 www.npoimpuls.ru
КБ-71 ООО

Один из самых современных центров по производство SMD поверхностного монтажа

Горки Ленинские +7 (800) 333-40-23 Московская область, Ленинский район, город Горки Ленинские, Технопарк М4, Светодиодный завод "КБ-71" [email protected] www.kb71.ru
Компания Элемент

ООО «Компания Элемент» предлагает услуги по изготовлению сложных печатных плат с высоким качеством на одном из ведущих мировых заводов.

Санкт-Петербург +7 (812) 317-71-37 195196 г. Санкт-Петербург, ул. Таллинская, дом 7 [email protected] www.pcbelement.ru
Компри Печатные Плат

Производство и поставка печатных плат различных степеней сложности и для любого типа пайки (включая печатные платы на СВЧ-материалах, многослойные печатные платы, гибкие и гибко-жесткие печатные платы, платы со встроенными электронными компонентами, печатные платы на алюминиевом основании, а также платы больших размеров и нестандартных форм). Инженерная поддержка и сопровождение при проектировании печатных плат

Москва +7 (495) 276-03-04 123060, г. Москва, ул.Расплетина, д.24, оф.107, [email protected] www.pcb1.ru
Контракт Электроника

Разработка печатных плат, срочное изготовление прототипов и небольших серий печатных плат, производство мелких, средних и крупных партий печатных плат

Москва +7 (495) 741-77-04 115114, Москва, Бизнес-парк «Дербеневский», ул. Дербеневская, д. 1, корпус 4, подъезд 18 [email protected] www.contractelectronica.ru
Концерн «Океанприбор АО

Изготовление печатных плат от производства опытных образцов до крупносерийных заказов

Санкт-Петербург +7 (812) 320-80-40 197376, Санкт-Петербург, Чкаловский пр., д. 46. www.oceanpribor.ru
ЛЕГИОН ЗАО

Основным видом продукции, производимой предприятием, являются односторонние и двухсторонние печатные платы с металлизацией отверстий до 4 класса точности.

Санкт-Петербург +7 (812) 292 38 08 194295, Санкт-Петербург, Поэтический бульвар, дом 2 (вход с ул. Есенина) [email protected] www.1-legion.ru
ЛПМ- Скиф ООО
Санкт-Петербург 197367 Санкт-Петербург Набережная реки Карповки, дом 5
ЛЭЙКОН

Производство печатных плат любой сложности: Односторонние и двусторонние, многослойные, высокой плотности, гибкие и гибко-жесткие, на металлической подложке, радиочастотные и СВЧ.

Санкт-Петербург +7 (812) 928-27-06 195197, г. Санкт-Петербург, пр.Мечникова, д.18, лит.А, пом. 4-Н, офис 106 [email protected] www. laycon.ru
Многослойные печатные платы, ЗАО

ЗАО «Многослойные печатные платы» является лидером по изготовлению высококачественных многослойных печатных плат в Санкт-Петербурге и на Северо-западе РФ.

Санкт-Петербург +7 (812) 596-57-67 198095, Санкт-Петербург, пр. Маршала Говорова, д. 40
Невская электронная компания ООО

ООО «Невская электронная компания» осуществляет изготовление печатных плат в Санкт-Петербурге и Москве по ценам производителя.

Санкт-Петербург +7 (812) 409-96-43 192102, г. Санкт-Петербург, ул. Заставская, д. 5 [email protected] www.necompany.ru
НИТИ Авангард

Контрактное производство электроники

Санкт-Петербург +7 (812) 740-08-23 195271, г. Санкт- Петербург Кондратьевский пр. д. 72 [email protected] www.nitiavangard.ru postavshhiki/predpriyatiya-prinimayushhie-zakazy-na-izgotovlenie-pechatnyh-plat/nauchno-issledovatelskij-centr-elektronnoj-vychislitelnoj-tehniki-ao.html
НИЦЭВТ, АО

АО «НИЦЭВТ» - одно из старейших предприятий-разработчиков средств вычислительной техники и системного программного обеспечения.

Москва +7 (495) 319-17-90 117587, Москва, Варшавское шоссе, д. 125. [email protected] www.nicevt.ru
НПВФ КУБ

Изготовление,проектирование,монтаж печатных плат

Москва +7 (495) 220-25-64 117630, г.Москва, Старокалужское шоссе, дом 62, строение 1, корпус 9, офис 310. [email protected] www.fkub.ru
НПК Комплект

Полный цикл изготовления. гибкие печатные платы, гибко-жесткие печатные платы, печатные платы с металлическим основанием, СВЧ-платы, композитные печатные платы (на одной печатной плате используются разные материалы, например, FR4 и Rogers).

Санкт-Петербург +7 (812) 749-68-85 Санкт-Петербург, пр. Ленина дом 77, лит. А. [email protected] www.npk-komplekt.ru
Омиа Алгол Рус

Продукция для производства печатных плат

Москва +7 (921) 912-34-71 www.omya-algol.com
Пантес

Компания входит в десятку крупнейших российских производителей электроники.

Санкт-Петербург +7 (800) 5555-073 195248, Санкт-Петербург, пр. Ириновский, д. 2, БЦ «Сокол» 3 этаж, офис 309. [email protected] www.pantes.ru
Печатные платы

Компания способна изготовить печатные платы любого класса сложности и практически любого типа: единичные прототипы и серии одно-, двухсторонних и многослойных печатных плат из классических материалов типа FR 4, платы из материалов на алюминиевой подложке, керамике, материалов для ВЧ, гибкие, гибко-жесткие, нестандартные платы с повышенной сложностью.

Москва +7 (495) 787-65-01 127055, г.Москва, ул.Сущевская, д.21. [email protected] www.pcbpro.ru
Печатные платы КПО ООО

Конструкторское Производственное Объединение «Печатные платы» обладает современными технологиями, которые способны удовлетворить самого требовательного заказчика и предлагает широкий спектр услуг - от проектирования ПП и разработки конструкторской документации до изготовления многослойных печатных плат 4-5 класса точности

Санкт-Петербург +7 (812) 251-80-33 198103, Санкт-Петербург, Рижский пр, 26. [email protected] www.pcb.spb.ru
Резонит ООО

Специализация ООО «Резонит» — изготовление печатных плат (от срочного производства единичных плат и мелких серий — до поставки крупных партий), монтаж печатных плат, продажа материалов для производства и монтажа PCB.

Москва +7 (495) 777-80-80 124527, Москва, Зеленоград, Солнечная аллея, д.6. [email protected] www.rezonit.ru
Русалокс

Компания РУСАЛОКС производит печатные платы на фольгированном алюминии (MCPCB 1-2 Вт/мК), на стеклотекстолите (FR4 — одно/двухсторонние) и печатные платы повышенной теплопроводности, основанные на алюмооксидном материале (al oxide PCB 120 Вт/мК).

Москва +7 (499) 557-00-65 125124, Россия, Москва, 1-я улица Ямского поля, 9/13 [email protected] www.rusalox.ru
Спин Электро ООО

Проектирование, разработка и производство печатных плат

Санкт-Петербург +7 (812) 980-42 41 190020, г. Санкт-Петербург, наб. Обводного канала, дом 199-201, корп. 29-30, лит. А [email protected] www.spin-electro.ru
ТЕХНОТЕХ ООО

Односторонние печатные платы; двустронние печатные платы; многослойные печатные платы вплоть до 30 внутренних слоев; гибкие печатные платы; гибко-жесткие печатных платы; СВЧ печатные платы; печатные платы из различных комбинаций материалов;

Йошкар-Ола +7 (8362) 45-56-91 г. Йошкар-Ола, Ул. Строителей, 98 [email protected] tehnoteh.ru
Учтех-Профи, НПП, ООО

Проектирование, изготовление и монтаж печатных плат. Существует возможность отправки во все регионы России

Челябинск +7 (351) 267-94-36, +7 (351) 272-31-32 454080, г. Челябинск, ул. Сони Кривой 58Б [email protected] www.promtehural.ru
Файн Лайн

Компания «Файн Лайн» специализируется на производстве сложных многослойных печатных плат, в том числе с использованием нестандартных материалов, с глухими и погребенными отверстиями, СВЧ-плат и плат с комбинированной структурой, а так же гибких и гибко-жестких печатных плат и плат с алюминиевым основанием.

Москва +7 (495) 666-44-04 107023, Россия, г.Москва, ул.М.Семеновская, д.11а, стр.4 [email protected] www.flnpcb.ru, www.fineline-global.com
ЭЛАРА АО

Одним из приоритетных направлений деятельности предприятия является предложение комплексных услуг по контрактному производству электроники для российского рынка.

Чебоксары +7 (8352) 22-14-03 428015, Россия, Чувашская Республика, г. Чебоксары, Московский проспект, д. 40. [email protected] www.elara.ru
ЭлеосЛТД, ООО

ООО «ЭлеосЛТД» является официальным представителем в Российской Федерации, одного из ведущих китайских производителей качественных печатных плат, компании HX Circuit Technology Co.,Ltd. Продукция HX Circuit Technology Co.,Ltd заслужила широкое признание клиентов по всему миру, включая Америку, Европу и Азию. Широкие технические возможности, выгодные цены при высоком качестве печатных плат -являются нашим конкурентным преимуществом.

Балашиха +7 (495) 773-04-99 143900, Московская область, г. Балашиха, ул. Калинина, д. 17/10, корп. 2, оф. 3 [email protected] www.eleosltd.ru
ЭЛМА Санкт-Петербургский центр, ООО

ООО Санкт-Петербургский центр ЭЛМА (Электроникс Менеджмент) - это российская научная и технологическая компания, разрабатывающая, изготавливающая и поставляющая технологические процессы, концентраты химических растворов, химическое и гальваническое оборудование для производства печатных плат.

Санкт-Петербург +7 (812) 320-29-57 194044, Санкт-Петербург, ул. Чугунная, 20 [email protected] www.elmaru.com

Печатная плата  — пластина из диэлектрика, на поверхности и/или в объёме которой сформированы электропроводящие цепи электронной схемы.

В данном разделе собраны предприятия России, выполняющие услуги по изготовлению печатных плат.

echemistry.ru

11. Технология изготовления печатных плат

11.1. Назначение и способы изготовления печатных плат

Печатная плата представляет собой плоское изоляционное основание, на одной или обеих сторонах которого расположены токопроводящие полоски металла (проводники) в соответствии с электрической схемой.

Печатные платы служат для монтажа на них электрорадиоэлементов (ЭРЭ) с помощью полуавтоматических и автоматических установок с последующей одновременной пайкой всех ЭРЭ погружением в расплавленный припой или на волне жидкого припоя ПОС-60. Отверстия на плате, в которые вставляются выводы электрорадиоэлементов при монтаже, называют монтажными. Металлизированные отверстия, служащие для соединения проводников, расположенных на обеих сторонах платы, называют переходными.

Применение печатных плат позволяет облегчить настройку аппаратуры и исключить возможность ошибок при ее монтаже, так как расположение проводников и монтажных отверстий одинаково на всех платах данной схемы. Использование печатных плат, обусловливает также возможность уменьшения габаритных размеров аппаратуры, улучшения условий отвода тепла, снижения металлоемкости аппаратуры и обеспечивает другие конструктивно-технологические преимущества по сравнению с объемным монтажом.

К печатным платам предъявляется ряд требований по точности расположения проводящего рисунка, по величине сопротивления изоляции диэлектрика, механической прочности и др. (ГОСТ 23752-79). Одним из основных требований является обеспечение, способности к пайке, достигаемое соответствующим выбором гальванического покрытия и технологией металлизации, поэтому в производстве печатных плат особое внимание уделяется химико-гальваническим процессам.

Изготовление печатных плат (ГОСТ 20406-75) осуществляется химическим, электрохимическим или комбинированным способом. В последнее время получили распространение новые способы изготовления — аддитивные. Ниже дана краткая характеристика каждого из способов.

Исходным материалом при химическом способе служит фольгированный диэлектрик, т. е. изоляционный материал, обычно гетинакс, на поверхность которого с одной или двух сторон наклеена медная фольга толщиной 35-50 мкм. На поверхность медной фольги вначале износится защитный рисунок (рельеф) таким образом, чтобы он защитил проводники при вытравливании меди. Защитный рисунок схемы выполняется стойкими к воздействию травильных растворов материалами. Затем следует операция травления, в результате которой полностью вытравливается медь и создается проводящий рисунок. Отверстия для установки выводов электрорадиоэлементов (резисторы, конденсаторы и т. д.) сверлятся или штампуются после вытравливания меди и не металлизируются. Пайка выводов электрорадиоэлемеитов производится непосредственно к контактным площадкам печатных проводников, как показано на рисунке ?, где 1 — проволочный вывод; 2 — диэлектрик; 3 — припой; 4 — контактная площадка. Химический метод применяется главным образом в производстве плат широковещательной радиоаппаратуры.

Электрохимический способ в зарубежной литературе и частично в отечественной практике называют полуаддитивным от латинского слова “additio” (сложение), так как проводящий рисунок создается в результате электрохимического осаждения металла, а не вытравливания. Приставка “полу” означает, что в технологии изготовления сохранена операция травления тонкого слоя металла, который образуется по всей поверхности платы при химической металлизации.

Исходными материалами в этом случае служат нефольгированные диэлектрики. Защитный рисунок в отличие от предыдущего метода наносят таким образом, чтобы открытыми оставались те участки поверхности, которые подлежат металлизации с целью образования проводниковых элементов схемы. Электрохимический способ предусматривает получение металлизированных отверстий одновременно с проводниками и контактными площадками.

Комбинированный способ представляет собой сочетание первых двух способов. Исходным материалом служит фольгированный с двух сторон диэлектрик, поэтому проводящий рисунок получают вытравливанием меди, а металлизация отверстий осуществляется посредством химического меднения с последующим электрохимическим наращиванием слоя меди. Пайка выводов электрорадиоэлементов производится посредством заполнения припоем монтажных отверстий в плате. На рисунке ? показана структура платы, изготовленной комбинированным методом, где 1 — диэлектрик; 2 — медная фольга; 3 — металлический слой.

Комбинированный метод в настоящее время является основным в производстве двусторонних и многослойных печатных плат для аппаратуры самого разнообразного назначения.

Аддитивный метод заключается в создании проводящего рисунка посредством металлизации достаточно толстым слоем химической меди (25-35 мкм), что позволяет исключить применение гальванических операций и операции травления. Исходным материалом при этом служит нефольгированный диэлектрик. Исключение вышеуказанных операций позволяет существенно уменьшить ширину проводников и зазоры между ними, что, в свою очередь, обеспечивает возможность увеличить плотность монтажа на платах.

3.11.3.1. Химический способ изготовления плат

Последовательность основных технологических операций представлена в таблице ?.

Таблица ?.

№ операции

Операция

№ операции

Операция

А. Негативный способ

Б. Позитивный способ

1

Резка и рихтовка заготовок

1

Резка и рихтовка заготовок

2

Зачистка поверхности

2

Зачистка поверхности

3

Получение защитного рельефа на проводниках

3

Получение защитного рельефа на пробельных участках

4

Травление меди

4

Нанесение гальванического покрытия на проводники

5

Удаление защитного рельефа

5

Удаление защитного рельефа

6

Сверление или штамповка отверстий

6

Травление меди

7

Обработка контура

7

Сверление или штамповка отверстий

8

Маркировка

8

Обработка контура

9

Нанесение защитной маски

9

Маркировка

10

Консервация

10

Консервация

Вариант А назван негативным потому, что для получения защитного рельефа методом фотопечати в качестве фотошаблона используется негативное изображение проводящего рисунка платы, т. е. пробельные места черные, а проводники — оптически прозрачные. Таким образом, проходящий через светлые участки поток ультрафиолетовых лучей при экспонировании полимеризует фоторезист, нанесенный на поверхность заготовки, образуя защитный рельеф.

В варианте Б защита проводящего рисунка при травлении осуществляется металлическим покрытием, поэтому защитный рельеф наносится на пробельные места и, следовательно, при фотопечати используется позитивное изображение платы.

Вариант А наиболее распространен в производстве плат бытовой радиоаппаратуры, он характеризуется минимальной трудоемкостью и возможностью автоматизации всех операций. В качестве метода получения защитного рельефа при этом используется наиболее дешевый в массовом производстве способ трафаретной печати — сеткография — с применением краски, полимеризующейся с помощью ультрафиолетового облучения. Для выполнения основных операций технологического процесса создана автоматическая линия модульного типа, в которой предусмотрены следующие операции: трафаретная печать, сушка краски, травление, промывка, удаление краски и сушка готовой платы. Химико-механическая подготовка поверхности фольги может производиться также на автоматической линии ГГМ 1.240.006. Защитная маска из эпоксидной смолы наносится на поверхность платы таким образом, чтобы открытыми были только контактные площадки проводников, которые обслуживаются припоем ПОС-60 при выполнении монтажных операций. Проводники, защищенные эпоксидным покрытием, облуживанию не подвергаются и этим достигается значительная экономия оловянного сплава. Эпоксидная защитная масса наносится также способом трафаретной печати. Пробивка отверстий обычно производится штамповкой с помощью кривошипных прессов. Защитная маска на контактных площадках служит затем флюсом при пайке на волне припоя.

Главным преимуществом данного метода является исключение из технологии операции нанесения маски из эпоксидной смолы, представляющей большую профессиональную вредность.

Вариант Б применяется весьма редко и ограничивается обычно изготовлением полосковых плат. В качестве гальванического покрытия при этом служит серебро с толщиной слоя 9—12 мкм. Платы с односторонним или двусторонним расположением проводников без металлизации отверстий могут быть изготовлены способами штамповки, переноса а также нанесения токопроводящих красок (паст). Способ штамповки рекомендован для массового производства, при этом в качестве основания служит любой диэлектрик, в том числе и картон. Медная фольга толщиной 35 мкм, смотанная в рулон, с одной стороны покрыта адгезионным слоем. Этим слоем фольга накладывается на диэлектрик, при штамповке вырубка проводников комбинируется с их прижимом к диэлектрику. Ненужная часть фольги удаляется. Затем платы подвергаются нагреву в прессованном состоянии для полимеризации адгезионного слоя с целью получения прочного сцепления проводников с основанием. Метод эффективен для плат массового производства с относительно простой схемой проводников. Операция травления не применяется, поэтому медь расходуется по прямому назначению, а отходы меди используются для переплавки. Данный способ — самый дешевый по расходу материалов и наименее трудоемкий.

Способ переноса заключается в получении проводящего рисунка на временном металлическом основании и затем переноса его на диэлектрик.

В качестве временного основания служит пластина из коррозионно-стойкой стали типа 18ХН9Т. На пластине получают защитный рисунок, как и при позитивном процессе, т. е. пробельные места закрыты фоторезистом или краской. Затем пластину подвергают гальваническому меднению в кислых электролитах и на ней образуется проводящий рисунок из меди толщиной 35—50 мкм. Фоторезист или краска удаляется, а пластина с проводящим рисунком прижимается к диэлектрику (гетинаксу), на поверхность которого нанесен клеевой слой. Проводящий рисунок легко отделяется от поверхности коррозионно-стойкой стали и приклеивается к диэлектрику вследствие очень слабого сцепления электроосажденной меди с коррозионно-стойкой сталью. Как и в предыдущем случае, платы подвергаются нагреву в прессованном состоянии для полимеризации клеевого соединения. Метод переноса целесообразен в условиях опытного и мелкосерийного производства при отсутствии очистных сооружений и условий для утилизации меди из травильных отходов. Технологический процесс представляет собой пример безотходной технологии.

Способ получения проводящего рисунка с помощью электропроводных красок или паст еще не получил широкого применения в промышленности из-за отсутствия соответствующих материалов необходимого качества, однако он является весьма перспективным и экономичным для получения плат широковещательной аппаратуры.

11.2. Электрохимический способ изготовления плат

Этот способ осуществляется посредством следующих основных операций: резки заготовок, сверления отверстий, подлежащих металлизации; подготовки поверхности; химического меднения; усиления меди гальваническим меднением; нанесения защитного рельефа на пробельные места; гальванического меднения; гальванического покрытия сплавом олово—свинец; удаления защитного рельефа; травления меди с пробельных мест.

Исходным материалом служит нефольгированный стеклотекстолит марок СТЭФ-1-2ЛК (ТУ АУЭО.037.0ОО) или СТЭК-1,5 (ТУ 16-503.201—80). На обе стороны этих материалов нанесен адгезионный слой из эпоксидно-каучуковой композиции.

Подготовка поверхности диэлектрика заключается в ее химической обработке смесью хромовой и серной кислот, в результате которой на поверхности образуются микровпадины, обеспечивающие хорошую адгезию металлизированного слоя и хорошую смачиваемость водными растворами. Операция травления в данном процессе характеризуется очень малой продолжительностью (до 1 мнн), так как вытравливанию подлежит весьма тонкий слой химически осажденной и усиленной гальванически до толщины 5-7 мкм меди. Таким образом, технологический процесс изготовления печатных плат электрохимическим (полуаддитивным) способом освобождает от необходимости применять фольгированные медью диэлектрики и обеспечивает повышенную плотность монтажа на платах, что обусловливает возможность в ряде случаев заменить сложные в производстве многослойные печатные платы на двусторонние. Ниже приведены характеристики отдельных операций и условия их выполнения.

Заготовки из стеклотекстолита режутся с учетом технологических полей на одноножевых или многоножевых ножницах. На технологическом поле сверлятся фиксирующие отверстия. Подготовка поверхности производится следующим, образом. Обезжиренную поверхность диэлектрика подвергают химической обработке.

Удаление остатков хромовых соединений с поверхности заготовки производится в следующей последовательности: промывка в воде, нейтрализация в растворе NaОН (5—10 %), повторная промывка, нейтрализация в растворе НСl (5О—100 г/л), еще одна промывка в воде. Сверление отверстий, подлежащих металлизации, осуществляют с помощью твердосплавных сверл. Операции химического меднения предшествует обезжиривание в щелочных растворах с добавками ПАВ, а затем активация в совмещенном растворе и химическое меднение. Рекомендуется заготовки плат перед активацией промывать в растворе соляной кислоты (50 г/л) во избежание разбавления раствора-активатора водой.

Последующие операции технологического процесса: нанесение защитного рельефа, гальваническое меднение, гальваническое покрытие сплавом олово-свинец, удаление защитного рельефа и травление меди с пробельных мест.

Весьма перспективно применение электрохимического способ в производстве металлических плат, обеспечивающих повышенную теплопроводность. Структура такой платы представлена на рисунке ?, где 1 — металлическое основание; 2 - изоляционный слой; 3 — металлический слой.

С целью обеспечения необходимой прочности сцепления проводников с основанием предусмотрено создание микрошероховатости поверхности посредством травления в сернохромовой смеси. Эта операция вызывает серьезные затруднения в производстве, связанные с токсичностью хромовых соединений и необходимостью принятия мер по обезвреживанию отходов. Большой интерес представляет безотходная технология подготовки поверхности с помощью, например, коронного разряда. В настоящее время ведутся экспериментальные работы в этом направлении.

Технологический процесс электрохимической металлизации заготовок при использовании различных пленочных материалов состоит из операций: очистки (обычная), сушки, обработки коронным разрядом активации, обработки в растворе “ускорителя”, химического меднения и гальванического меднения.

Шероховатость поверхности можно создать также гидроабразивной обдувкой, направляя абразивно-водяную пульпу под давлением 0,5-0,6 МПа.

11.3. Комбинированный способ изготовления плат

В зависимости от метода защиты проводящего рисунка при вытравливании меди комбинированный способ может осуществляться в двух вариантах: негативном, когда защитой от вытравливания служат краска или фоторезист, и позитивном, когда защитным слоем служит металлическое покрытие (металлорезист). Названия эти способы получили от фотошаблона, применяемого при создании защитного рельефа: в первом случае при экспонировании рисунка используется негатив печатной схемы, во втором — позитив. Комбинированный метод изготовления печатных плат применяется рядом предприятий с мелкосерийным производством (Таблица 11.1).

Таблица 11.1.

№ операции

Операция

№ операции

Операция

А. Негативный способ

Б. Позитивный способ

1

Резка заготовок и химико-механическая подготовка поверхности

1

Резка заготовок и химико-механическая подготовка поверхности

2

Получение защитного рисунка с негатива

2

Получение защитного рисунка с позитива

3

Травление меди

3

Нанесение защитной лаковой пленки

4

Удаление защитного рисунка

4

Сверление и зенкование отверстий

5

Нанесение защитной лаковой пленки

5

Химическое меднение

6

Сверление и зенкование отверстий

6

Удаление лаковой пленки

7

Химическое меднение

7

Гальваническое меднение

8

Удаление лаковой пленки

8

Гальваническое покрытие сплавом олово-свинец

9

Гальваническое меднение в два приема с помощью рамочных приспособлений

9

Удаление защитного рисунка

10

Покрытие сплавом Розе

10

Травление

Негативный комбинированный способ имеет следующие недостатки:

1. При сверлении отверстий на выходе сверла образуются заусенцы и создаются усилия, направленные на отрыв контактной площадки. Для сохранения контактной площадки в конструкции платы предусматривается увеличение диаметра контактной площадки (ширины пояска) на 0,6—0,8 мм. Это требование приводит к снижению плотности монтажа.

2. В результате вытравливания меди в начале процесса диэлектрик остается обнаженным для воздействия агрессивных гальванических растворов и активных флюсов (HCl) при покрытии сплавом Розе. По этой причине сопротивление изоляции готовых плат на порядок ниже, чем при позитивном процессе.

3. В связи с тем, что гальваническая металлизация осуществляется в приспособлениях, закрывающих отверстия с одной стороны, толщина слоя металла в отверстии очень неравномерна; часто имеют место случаи отслаивания металла при перепайке деталей.

4. Процесс предусматривает много ручных операций.

5. Операция покрытия сплавом Розе особенно токсична из-за выделения продуктов, содержащих свинец и кадмий.

Недостатком позитивного комбинированного способа является нестойкость фоторезистов на основе поливинилового спирта при выполнении двукратной гальванической обработки, что создает большие трудности в производстве (зачистка, ретушь и т. п.).

К недостаткам обоих способов можно отнести следующие.

1. Разрыв технологического процесса из-за применения ручной операции лакировки, требующей высокой квалификации маляра.

2. Сверление через лаковую пленку ухудшает стойкость, сверл.

3. Жидкие фоторезисты создают защитный рисунок толщиной не более 12 мкм, тогда как гальваническое осаждение меди и покрытия производится на толщину от 30 до 60 мкм (и более). В результате этого металл нарастает за пределы рисунка проводящего слоя и это “разрастание” приходится срезать скальпелем, что связано с большими затратами труда.

4. Удаление заусенцев после сверления осуществляется зенкованием, что увеличивает трудоемкость сверления.

Негативный способ легче осваивается из-за пониженных требований к стойкости фоторезиста и возможности травления в любых растворах (в том числе FeCl3), позитивный — обеспечивает более высокую плотность монтажа и лучшие диэлектрические свойства плат, он позволяет также осуществлять автоматизацию отдельных операций, например гальванических.

Оба способа характеризуются значительной трудоемкостью, так как в технологических процессах имеется много ручных операций, поэтому они могут использоваться лишь в условиях опытного и мелкосерийного производства. Наиболее перспективным является позитивный способ, осуществляемый по так называемому базовому технологическому процессу, структура которого аналогична вышеизложенному полуаддитивному процессу. К основным операциям процесса можно отнести резку заготовок и сверление отверстии, подлежащих металлизации; подготовительные операции; химическое меднение; утолщение слоя меди до 5-7 мкм гальваническим меднением; нанесение защитного рельефа на пробельные места; гальваническое меднение; гальваническое покрытие сплавом олово-свинец; удаление защитного рельефа; травление; обрезку по контуру, оплавление покрытия олово-свинец; маркировку, консервацию, упаковку.

Процесс обеспечивает получение зазоров между проводниками и ширину проводников до 0,2 мм.

Подготовительные операции перед химическим меднением заготовок плат с просверленными отверстиями могут осуществляться в двух вариантах: 1) механическая зачистка с целью удаления заусенцев и дефектов на поверхности фольги в сочетании с химическими операциями; 2) электролитическое полирование.

Используя комбинированный метод, можно изготавливать платы с повышенной плотностью монтажа. В этом случае исходным материалом служит стеклотекстолит, фольгированный очень тонкой медной фольгой (толщина фольги 5 мкм). Медная фольга защищается от возможных повреждений, при хранении, транспортировании и сверлении отверстий медным или алюминиевым листовым протектором толщиной 50-75 мкм. После сверления отверстий в заготовке и операции химического меднения протектор отделяется от поверхности фольги и укладывается в отдельную тару для последующей сдачи предприятиям цветной металлургии как вторичное сырье. Заготовка подвергается гальванической металлизации (“затяжке”) и другим операциям, приведенным выше.

Технологический процесс изготовления двусторонних печатных плат комбинированным методом из материала типа “Слофадит” обеспечивает повышенную плотность монтажа (класс 3 по ГОСТ 23751—79), что позволяет во многих случаях многослойные платы в 6—8, слоев заменить на двусторонние.

Широкое применение микросборок, интегральных схем и изделий современной полупроводниковой техники привело к тому, что при монтаже их на печатные платы резко возросла коммутация между ними и появилась необходимость размещения проводников в различных изолированных друг от друга слоях многослойной платы. Многослойные соединения осуществляются через металлизированные сквозные отверстия, поэтому и метод изготовления МПП получил название “метод сквозной металлизации”.

Структура многослойной платы представлена на рисунке ?, 1 — металлический слой; 2 — тонкий диэлектрик слоя МПП; 3—изоляционная прокладка из стеклоткани; 4 — контактная площадка в слое МПП. Технологический процесс изготовления МПП состоит из трех основных этапов: 1) подготовки отдельных слоев; 2) сборки пакета и прессования; 3) получения проводящего рисунка на наружных слоях.

11.4.. Аддитивный способ изготовления плат

Этот способ предусматривает получение проводящего рисунка из меди толщиной 25-30 мкм, осажденной химическим способом (толстослойное химическое меднение). При этом слой меди должен иметь плотность 8800-8900 кг/м3, чистоту 99,8-99,9 %, электрическое сопротивление не более 0,0188 Ом·мм.

Основные преимущества аддитивного метода следующие: уменьшение количества операций и соответственно производственных площадей и оборудования; равномерность слоя осажденной меди при соотношении толщины платы к диаметру отверстий 10 : 1; высокая плотность монтажа, допускающая возможность создания зазоров между проводниками и ширину их до 0,1 мм; снижение расхода материалов вследствие отсутствия травления; возможность использования для химической металлизации солей меди из травильных отходов; возможность полного исправления дефектных плат после стравливания меди и повторной металлизации.

Технологические процессы изготовления печатных плат определяются типом исходного материала и могут быть представлены в трех вариантах:

  1. из диэлектрика с введением в его состав катализатором процесса химического меднения;

  2. на материале СТЭФ-1 с покрытием каталитической эмалью;

  3. из диэлектрика для полуаддитивной технологии.

1. Исходным материалом для плат служит диэлектрик марки СТАМ по ТУ ОЯЩ.503.041—78. Основными операциями технологического процесса являются резка заготовок; сверление отверстий; получение защитного рельефа; подготовка поверхности; химическое меднение, предварительное и толстослойное. Получение защитного рельефа осуществляется с помощью сухого пленочного фоторезиста СПФ-2.

С целью повышения устойчивости рисунка к длительной обработке в щелочных растворах химического меднения плата подвергается термообработке в воздушной среде при температуре 95±5°С в течение 30 мии. Подготовка поверхности заключается в травлении в сернохромовой смеси с последующими промывками и нейтрализацией. Активирование поверхности производится в совмещенном растворе с последующей обработкой в растворе NaOH (20 г/л).

Предварительное химическое меднение производится в тартратном растворе в течение 15-20 мин. Перед толстослойным меднением следует термообработка тонкого слоя химически осажденной меди при 100 °С в течение 1-2 ч. Толстослойное химическое меднение проводится в трилонатном или тартратном растворе.

2. Исходным материалом для плат служит нефольгированный стеклотекстолит СТЭФ-1. Сверленые заготовки из этого материала покрывают из краскораспылителя эпоксидной эмалью с наполнителем, в качестве пигмента служит двуокись титанаTiO2, к которой добавлено 0,04 % солей палладия. Эмаль ЭП-5215 поставляется по ТУ 6-10-11-19-30—79.

Основные операции технологического процесса следующие: резка заготовок; сверление отверстий; нанесение эмали ЭП-5215 на поверхность и в отверстия; травление; получение защитного рисунка; химическое меднение (предварительное и толстослойное).

Травление слоя эмали осуществляют в растворе, содержащем 130 г/л хромового ангидрида и 650 г/л серной кислоты. Температура раствора 70 °С, продолжительность — 10 мин, плотность загрузки — 0,9—1,0 дм2/л.

Предварительное химическое меднение производится в стандартном растворе, минуя активирование, так как катализатор процесса химического меднения находится в слое эмали. Толстослойное химическое меднение и получение защитного рельефа выполняется аналогично предыдущему варианту.

3. Исходным материалом служит диэлектрик СТЭК или СТЭФ-1-2ЛК.

Основными операциями технологического процесса при этом являются резка заготовок; сверление отверстий; подготовка поверхности; активирование; получение защитного рельефа; химическое меднение предварительное и толстослойное.

Существенной особенностью данного технологического процесса является отделение операции активирования от химического меднения, в результате чего химическое восстановление меди происходит на участках, свободных от защитного рисунка, т.е. в отверстиях и на проводниках.

Активирование производится в совмещенном растворе, причем ему предшествует погружение в раствор, содержащий 75—80 г/л NaOH. После промывки в улавливателе следует сушка путем легкого обдуваиия воздухом. Химическое меднение производится в растворах, как и в предыдущих вариантах.

Для обеспечения пайки электрорадиоэлементов платы необходимо подвергнуть покрытию сплавом ПОС-60 горячим способом. Обычно принятая техника лужения в данном случае непригодна, так как слой припоя достигает значительной толщины, что может вызвать образование “мостиков” между проводниками. Покрытие необходимо производить по методике, предусматривающей после погружения плат в расплавленный припой обдувку их горячим воздухом с целью выглаживания слоя припоя и удаления его излишков.

В установках для выполнения этой операции платы, подвергнутые флюсованию, проходят зону подогрева с целью удаления влаги и смягчения термоудара, вызывающих коробление при погружении в расплавленный припой, время выдержки плат в расплавленном припое не должно превышать 4 с. Основная часть установки — воздушные ножи — предназначена для равномерной подачи горячего воздуха по всей длине плат.

Толщина слоя припоя на платах в среднем составляет около 8 мкм.

studfiles.net

Создание печатных плат для мелкосерийного производства / Хабр

На Хабре много статей по настройке и сопровождению IP телефонии и сопутствующего оборудования. Встречаются статьи и по разработке печатных плат. Есть статьи и о том, как самому сделать печатную плату при помощи ЛУТ технологии. Например, «ЛУТ на виниле или домашняя Arduino Mini». Есть описание разных систем проектирования печатных плат: Cadence, Eagle , DipTrace или описание отдельных процессов при разработке печатных плат, таких как передача информаци из Altium в AutoCAD.

Хочу представить статью о том, как происходит постановка на производство печатной платы на основе опыта фирмы и собственного опыта по другим работам. Моей задачей является модернизация существующей платы для усовершенствования существующих качеств и, возможно, открытия новых, доселе не виданных для нее горизонтов. За основу была взята плата ЦПУ с кодовым названием «G20».

Данная плата в последствии стала основной для многих разработок фирмы. Она будет использоваться с пристегнутыми платами в разных конфигурациях. Несколько разработчиков работает над проектами для этих плат, каждый ведет свою плату-надстройку и основную.

Когда-то давно, еще до меня, в моей фирме разработали замечательную плату, благодаря продуманной конструкции, послужившую коркой для многих устройств фирмы. Выбор остановили на процессоре Atmel ARM9 G20, в качестве ПЛИС (программируемая логическая интегральная схема, FPGA в англ. литертуре) для связи с другими платами используется Cyclone III от Altera. Cвязь между ПЛИС и ЦПУ — по параллельной шине, которая совместима с шиной памяти процессора.

Процессор работает на частоте 400 МГц, на плате установлена память две микросхемы SRAM 512Mбит через 32 разрядную шину. Также на плате установлен fast ethernet 10/100 и 2 host USB, которые могут использоваться как для загрузки программы, так и для подключения к Wi-Fi, сетевого адаптера и прочих устройств. Так же в схему заложена микросхема PRI, обеспечивающая поток Е1/Т1 на случай подключения к телефонной сети.

На плате установлены разъёмы для подсоединения вспомогательных плат. Одна плата может быть подсоединена сверху (в виде мезонина), и две по бокам. Разъёмы двухрядные с шагом 2,54 мм, с пайкой в отверстие. Их плюсом является доступность, как по цене, так и по наличию в магазине, на базаре, в закромах. Тоже касается и ответных частей. Минус — они большие, за счет большого шага между контактами у них меньше соединительных линий, компоненты с монтажом в отверстия занимают место для трассировки во всех слоях платы, а разъёмы для верхней платы разграничивают плату на три части. Монтаж в отверстия позволяет ставить разъём как вверх так и вниз. Хотя на практике все платы ставятся поверх основной.

Для этой платы были разработаны несколько типов плат субмодулей, которые конструктивно можно назвать мезонинами. Так же платы могут посредством переходников присоединятся по бокам от платы.

Одним из таких модулей является плата GSM на четыре или восемь каналов. Съёмный мезонин позволил разработать платы на различных GSM модулях от разных фирм и выпустить платы на несколько диапазонов (GSM, UMTS, WCDMA). А так же устанавливать платы для традиционной телефонии и создания мини АТС с расширенными функциями. Есть версия с SIM банком на 100 SIM карточек.

Разнесение функций на несколько плат позволило отлаживать платы отдельно друг от друга и впоследствии выпустить усовершенствованные модели мезонинов.

Так же плата служит для отладки и тестирования отдельных программных модулей для будущих систем. К её контактам можно подключить EvBoard и начать отладку до изготовления собственной платы.

Со временем возможностей основной платы перестало хватать и решено было разрабатывать новую плату взамен существующей. Использование параллельной шины накладывало свои ограничения на скорость обмена и количество одновременно нагружаемых плат. Это позволило составить требования к новой плате.

Плата должна иметь больше оперативной памяти, раздельную шину между памятью и ПЛИС, возможность использования быстрых последовательных каналов для связи с платами, по возможности наличие PCIe. На этапе выбора компонентов добавились дополнительные требования: встроенный программатор для ПЛИС, два разъёма Ethernet, USB-hub, HDMI, совместимость со старыми платами. Часть интерфейсов была заложена ввиде отдельных разъёмов для подключения устройств при помощи шлейфа.

После анализа доступных процессоров выбор пал на iMX6 от Freescale. По сравнению с конкурентами на него была открыта вся документация, у него была вменяемая документация и рекомендации доступные без длительного подписания NDA, пригодный к «простой» пайке BGA корпус, «нормальная» шина памяти, поддержка плавающей запятой и ряд других преимуществ. За ядро ARM Cortex-A9, поддержку плавающей запятой и другие плюшки, голосовал не я. Таким образом, получили компромисс современных мобильных технологий и возможностей нашего производства.

Схему взяли от одного из отладочных комплектов и переработали под свои нужды.

Выбор соединительных разъёмов для боковых плат тоже являются компромиссом между желанием получить много сигналов параллельных и последовательных и ценой на разъёмы. Цена за пару которых может переваливать за 60 у.е. Решено было остановится на торцевом разъёме PCIe. В будущем это позволит сэкономить на одном разъёме в паре плат. При этом разъём удовлетворит как передаче быстрых сигналов до 3.125 ГГц, которые присутствуют в Cyclone GX.

Так как у нас нет необходимости использовать E-Ink дисплей, то на параллельную шину процессора повесили ПЛИС, дополнительно соединили PCIe шину процессора и гигабитную шину ПЛИС через высокоскоростной ключ. Теперь у нас процессор может отдавать PCIe либо в ПЛИС, либо на один из боковых разъёмов. Помимо PCIe x1 с процессора на разъёмы выведены 4 гигабитных канала на каждую сторону. В дальнейшем планируется использовать их для “быстрых” соединений.

3D моделирование внутри пакета проектирования позволяет «не закрыть» важные разъёмы другими платами.

Дальше нужно было уместить все в нужные нам размеры платы, но при этом оставить возможность доработки платы на месте для случая «это паяем, это не паяем». Такой подход позволяет делать сложную плату у контрактного производителя, а у себя допаивать интерфейсы под заказчика. В итоге заказчик не платит за то, чем нем пользуется. Эти ограничения не позволяют сделать все миниатюрным в размере 0201 и разместить максимально близко друг к другу. К тому же иногда приходится выводить сигналы наружу для возможности запаять перемычку. Это плата за универсальность.

Приходится искать другие пути по минимизации занимаемой площади.

Так, например, конденсаторы одного номинала и напряжения могут занимать больше места по высоте или по площади. Многие микросхемы выпускаются в разных типах корпусов и могут при одинаковой функциональности существенно экономить место.

Можно оценть различия SOIC и QFN корпусов DC-DC преобразователей. По сравнению с ними корпуса DDPAK и TO220 просто гиганты.

У Texas Instruments есть различные типы step-down DC-DC. Но современные преобразователи способны работать на более высоких частотах и требуют меньшей величины индуктивности. Если величина тока 1-2 А, то можно найти индуктивности и 12 … 18 мкГн в приемлемых по размерам корпусам. А если нужно обеспечить ток 5 А и более, то размеры индуктивности становятся слишком большими. Выбор другого преобразователя позволит перейти к индуктивностям 1 … 2 мкГн и вписаться в габаритные показатели. Причем не только по площади и высоте, но и по весу компонентов.

При проектирование печатной платы необходимо учитывать влияние компонентов друг на друга и стараться отделять чувствительные к помехам цепи от источников помех. Которыми, кстати, являются импульсные DC-DC преобразователи. Поэтому применение экранированных индуктивностей, схем компенсации и размещение источников вторичного питания подальше от чувствительных цепей может спасти кучу нервов в дальнейшем. Когда невозможно разнести элементы на плате, приходится ухищряться разными способами ограничивая влияние сигналов внутри платы.

Здесь показана область земляного слоя вблизи ВЧ разъёмов внутри слоя питания на плате PCI GSM шлюза.

Вырез на внутреннем слое земли для уменьшения взаимного влияния цифровых и ВЧ шумов на плате PCI GSM шлюза.

Стоит заметить, что трассировка печатной платы для производства ЛУТом и для производства на заводе отличается. Так же будем иметь различия в требованиях монтажа компонентов. При малых партиях или единичном производстве прототипов требования монтажников могут быть вроде: «мне нужна плата и компоненты, если есть трафарет для монтажа SMD компонентов — давайте». Часто достаточно карты монтажа компонентов, где иногда разным цветом указано, какие компоненты куда ставить, а иногда просто указаны позиционные обозначения. Без указания точных координат. Ниже представлен кусок такого сборочного чертежа.

Если мы собираемся делать сложные платы или простые, но большого объёма, то стоит обратить внимание на серьезных контрактных сборщиков. У них есть оборудование как для монтажа, так и для проверки собранных плат. У них и требований больше. К качеству печатных плат, трафарету, компонентам и даже трассировке.

На печатных платах могут потребоваться технологические зоны по краям для движения платы по конвейеру. Их размеры зависят от производителя и для наших производителей достаточно 3 … 5 мм. Если на краю платы компоненты не монтируются, то технологические зоны можно не использовать. Плата будет перемещаться по конвейеру, опираясь на свои края. Если плата имеет неровные контуры, то для нормального движения по конвейеру нужно будет выровнять контуры при помощи технологических зон.

Так же может потребоваться дополнительная оснастка для нанесения паяльной пасты. Для проектов с элементами поверхностного монтажа обычно это трафарет. Если планируете делать большую партию плат или плата будет не единичной, то лучше сразу доработать библиотечные компоненты “под производство”.

Под термином “под производство” я имею ввиду как монтажное производство так и производство самих плат. Для монтажников важно, чтоб все компоненты имели правильные посадочные места. Посадочное место под компонент обычно чуть больше чем припаиваемый элемент, чтоб оставались зазоры на случай неточностей позиционирования. Но и слишком большими их делать не стоит. На больших площадках мелкий компонент может увести в сторону и получим брак монтажа. К тому же на большой площадке может быть слишком много паяльной пасты и при расплавлении выкипающий флюс поднимет компонент боком. Если же контактная площадка большая, а отверстие под трафарет уменьшить, то припой может растечься по площадке и не достанет до ножки компонента.

Для компонентов с шагом между выводами менее 0,5 мм рекомендуют делать открытие в трафарете под паяльную пасту меньше контактной площадки, чтоб паяльная паста не выдавливалась установленным на нее компонентом и при оплавлении не образовывались короткие замыкания и перемычки.

На рисунке красным показана граница открытия паяльной маски, сиреневым — контактная площадка, черным — открытие в трафарете под паяльную пасту.

Сейчас очень много компонентов выпускаются во все меньших и меньших по размеру корпусах и, несмотря на повышающуюся эффективность, перед разработчиками стоит задача отводить тепло от микросхем. Так, если размеры корпуса малы, то через крышку отвести необходимое количество тепла не получается и придумали «ход конем» — припаивать донышко микросхемы к плате, а уже плата отводит тепло через слои меди.

На практике у меня была возможность убедится в эффективности такого метода охлаждения, когда в микросхемах с не припаянным брюшком включалась термозащита от перегрева, и когда после припайки температура микросхем снизилась, а платы повысилась и даже стали греться разъёмы, так как сброс тепла происходил на земляной слой, к которому были припаяны и корпуса разъёмов.

Так вот, нужно внимательно читать рекомендации к проектированию посадочных мест для таких микросхем, так как у некоторых из них нет другого контакта с землей, кроме «брюшка». И если не положить под контакт паяльную пасту, то электрически микросхема не будет подсоединена к земле. Для микросхем с небольшим количеством ножек термопад под корпусом небольшой величины, а у больших микросхем нужно быть осторожным. Производители указывают в рекомендациях какую контактную площадку и какое отверстие в трафарете под паяльную пасту нужно делать. Иногда в документации указывается просто 60 — 70% от площади термопада, а иногда даются рекомендации на разделение большого окна в трафарете на несколько маленьких, тогда при нанесении паяльной пасты она не будет выдавливаться шпателем из больших отверстий. Так же рекомендуют поступать и с большими контактными площадками под другие компоненты, например, для больших индуктивностей.

Для того чтоб система установки компонентов смогла правильно установить компонент, ей нужна точка отсчёта на плате и координаты установки компонентов с углом поворота. Подробнее об этом можно почитать поискав информацию о реперных знаках на печатных платах или PCB fiducials. Файл с координатми готовится в программе проектирования печатной платы автоматически.

У меня на выходе получается подобный файл c табуляциями.

Заголовок:

$HEADER$ BOARD_TYPE PCB_DESIGN UNITS MM $END HEADER

Часть с компонентами:

$PART_SECTION_BEGIN$ R303 RC0402FR-0768KL 270.00 120.30 39.10 BOTTOM YES C580 CC0402-KR-X5R-5BB-104 180.00 38.40 88.50 BOTTOM YES VT3 NDS331N 90.00 56.80 26.40 TOP NO … C282 CC0402-KR-X5R-7BB-104 180.00 128.10 26.20 BOTTOM YES VS2 BZT52C-3V3 90.00 71.40 27.10 BOTTOM YES U23 MCIMX6Q4AVT08AC 0.00 106.00 45.90 TOP NO $PART_SECTION_END$

Координаты с репеерными знаками:

$FIDUCIAL_SECTION_BEGIN$ BOARD 42.50 8.00 BOTTOM BOARD 177.00 8.00 BOTTOM BOARD 183.40 113.50 BOTTOM BOARD 183.40 113.50 TOP BOARD 177.00 8.00 TOP BOARD 42.50 8.00 TOP U23 94.50 57.40 TOP U23 117.50 34.40 TOP U10 22.70 87.00 TOP U10 38.70 109.00 TOP U18 52.50 69.50 TOP U18 81.50 98.50 TOP $FIDUCIAL_SECTION_END$

Для плат малого размера требуется объедение мелких плат в групповую заготовку или панель. Это требование есть как у производителей подложек печатных плат, так и у монтажников. На монтаж отдаются координаты компонентов для одной платы, шаг плат в заготовке и угол поворота платы в заготовке.

Поворачивать платы в основном приходится для уменьшения площади заготовки при кривом контуре платы. Но и прямоугольные платы могут быть повёрнуты в панели. Однажды на монтажном производстве потребовали увеличить технологический отступ с 5 до 30 мм для одной стороны платы, так как там очень близко к краю плату необходимо было поставить компоненты с мелким шагом. При объединении плат в панель проблемный край плат был развернут в середину панели и технологический отступ остался со всех сторон 5 мм. Это позволило уже на производстве печатной платы разместить две панели на одном большом листе стеклотекстолита. При этом заказчик платы не переплачивал за отходы плат.

Панель для изготовления плат газового счётчика.

После монтажа панели платы могут быть разъединены на монтажном производстве, либо легко отделены у нас. Далее идёт проверка, прошивка, настройка, корпусирование и предпродажная подготовка.

Это не все этапы подготовки плат и устройств к производству. Можно добавить еще минимизацию списка компонентов, проверку на технологичность, разработку корпуса и размещение компонентов на плате и другие операции, но я постарался описать те действия, которые мне приходилось делать.

P.S. Для новой платы фото еще нет, так как она еще не приехала. На основе схемы новой платы сейчас делается плата в габаритах старой и без лишних наворотов в виде дисплея дорогой ПЛИС и прочего.

habr.com

Производство печатных плат, технология изготовления

Печатная плата является диэлектрической пластинкой, на поверхность которой наносится огромное количество токопроводящих дорожек. Печатная плата, это, прежде всего основа любого радиотехнического устройства, которая облегчает процесс производства электроники и дает возможность выполнять электронные устройства максимально маленькими и достаточно удобными для применения в повседневной жизни. С уверенностью можно сказать, что печатная плата является второй, если не первой по распространенности вещью, которая окружает современного человека.

Технология производства печатных плат

Производство плат, хотя данный процесс является отлаженным, остается на сегодняшний день наиболее технологически сложным и невероятно тонким производственным процессом в промышленном мире.

Производство печатных плат состоит из нескольких процессов, от того насколько качественно будут выполнены последние будет зависеть надежность и работоспособность радиотехнического прибора. При проектировании печатной платы решается одновременно несколько взаимоисключающих задач, для того чтобы расположенные на маленькой площади элементы могли вести себя так, как это было изначально предусмотрено в схеме и не мешали друг дружке паразитными электромагнитными наводками теплом, которое выделяется при работе максимально мощных полупроводниковых приборов. К таким приборам с уверенностью можно отнести компьютерные процессоры. Так, нынешние процессоры, в которых имеются три и даже четыре внутренних ядра, могут являться электронагревательными приборами. Иногда, когда нужно получить самое миниатюрное электронное устройство, используются многослойные печатные платы, которые представляют собой несколько печатных плат соединенных в одно неразрывное целое. Все это пронизано токопроводящими элементами, которые обеспечивают работу и взаимодействие слоев многослойной печатной платы. Конечно, сложность данного сооружения в несколько раз увеличивается, и производство плат в единичных экземплярах является экономически необоснованным. Что касается массового выпуска, то его, возможно, наладить лишь, применяя производственные линии, которые будут управляться компьютерами. В таких компьютерах, естественно имеется не один десяток печатных плат. Фактически получается, что электроника перешла на самостоятельное воспроизводство, получается, что фантасты были недалеки от истины, когда описывали восстание машин, заживших своей жизнью. К огромной радости, главным управляющим в настоящее время является человек. Стоит отметить, что печатная плата с вытравленными на ней токопроводящими дорожками еще не считается электронным устройством. Чтобы она им стала, на плате требуется выполнить монтаж электронных элементов. При производстве данный этап носит название сборки печатных плат. Он является роботизированным, при этом микросхемы, из которых состоит современная электроника, уже не имеют выводов, представляющих собой металлические ножки. Они были заменены крохотными капельками припоя, выполненных в виде шариков. Робот только прикладывает микросхему к месту, на которое положена печатная плата и немного нагревает. Без сомнения, такое сложное технологическое оборудование могут купить только специализированные производства. Печатные платы используются для монтажа на них электрорадиоэлементов при помощи полуавтоматических и автоматических установок с дальнейшей одновременной пайкой всех элементов в результате погружения в расплавленный припой или на волне жидкого припоя ПОС-60.

Конструирование печатных плат выполняется ручным, полуавтоматизированным и автоматизированным методами. Конструирование начинается с разработки эскиза, выполнение которого осуществляют в увеличенном масштабе: 2:1 или 4:1. После этого составляют чертеж печатных плат.

Производство печатных плат выполняется химическим, электрохимическим или комбинированным способом. Сегодня наиболее распространенным является способ производства аддитивный. Суть химического метода заключается в том, что на медную фольгу, которая приклеена к диэлектрику с одной или двух сторон, наносят позитивный или негативный рисунок схемы проводников. Далее травлением полностью удаляется медь и создается проводящий рисунок. При электрохимическом методе проводящий рисунок получается благодаря электрохимическому осаждению металла, а не вытравливанию. Комбинированный способ состоит из сочетания первых двух способов. Проводящий рисунок получают вытравливанием меди, а металлизация отверстий производится посредством химического меднения с дальнейшим электрохимическим наращиванием слоя меди. Аддитивный же метод заключается в то, что создается проводящий рисунок благодаря металлизации достаточно толстым слоем химической меди от 25до 35 мкм. Это дает возможность исключить применение гальванических операций и операций травления. Осуществление металлического проводящего рисунка, как в отверстиях, так и на поверхности диэлектрических материалов выполняется, как правило, в две стадии химического меднения.

Видео-обзор всего процесса:

Следует отметить, что гальваническим меднением получают слой меди как в монтажных, так и в переходных отверстиях, а также проводящий рисунок при полуаддитивной технологии.

Читайте также

moybiznes.org

Изготовление высококачественных печатных плат в «домашних» условиях

Таити!.. Таити!.. Не были мы ни на каком Таити! Нас и тут неплохо кормят! © Кот из мультика

Вступление с отступлением

Как в бытовых и лабораторных условиях делали платы раньше? Способов было несколько — например:

  1. рисовали будущие проводники рейсфедерами;
  2. гравировали и резали резаками;
  3. наклеивали скотч или изоленту, потом рисунок вырезали скальпелем;
  4. изготавливали простейшие трафареты с последующим нанесением рисунка с помощью аэрографа.

Недостающие элементы дорисовывали рейсфедерами и ретушировали скальпелем.

Это был длительный и трудоемкий процесс, требующий от «рисователя» недюжинных художественных способностей и аккуратности. Толщина линий с трудом укладывалась в 0,8 мм, точность повторения была никакая, каждую плату нужно было рисовать отдельно, что сильно сдерживало выпуск даже очень маленькой партии печатных плат (далее — ПП).

Что же мы имеем сегодня?

Прогресс не стоит на месте. Времена, когда радиолюбители рисовали ПП каменными топорами на шкурах мамонтов, канули в лету. Появление на рынке общедоступной химии для фотолитографии открывает перед нами совсем иные перспективы производства ПП без металлизации отверстий в домашних условиях.

Коротко рассмотрим химию, используемую сегодня для производства ПП.

Фоторезист

Можно использовать жидкий или пленочный. Пленочный в данной статье рассматривать не будем вследствие его дефицитности, сложностей прикатывания к ПП и более низкого качества получаемых на выходе печатных плат.

После анализа предложений рынка я остановился на POSITIV 20 в качестве оптимального фоторезиста для домашнего производства ПП.

Назначение: POSITIV 20 — фоточувствительный лак. Используется при мелкосерийном изготовлении печатных плат, гравюр на меди, при проведении работ, связанных с переносом изображений на различные материалы.Свойства: Высокие экспозиционные характеристики обеспечивают хорошую контрастность переносимых изображений.Применение: Применяется в областях, связанных с переносом изображений на стекло, пластики, металлы и пр. при мелкосерийном производстве. Способ применения указан на баллоне.Характеристики: Цвет: синий Плотность: при 20°C 0,87 г/см3 Время высыхания: при 70°C 15 мин. Расход: 15 л/м2 Максимальная фоточувствительность: 310-440 нм

Подробнее о POSITIV 20 можно почитать здесь.

В инструкции к фоторезисту написано, что хранить его можно при комнатной температуре и он не подвержен старению. Категорически не согласен! Хранить его нужно в прохладном месте, например, на нижней полке холодильника, где обычно поддерживается температура +2…+6°C. Но ни в коем случае не допускайте отрицательных температур!

Если использовать фоторезисты, продаваемые «на розлив» и не имеющие светонепроницаемой упаковки, требуется позаботиться о защите от света. Хранить нужно в полной темноте и температуре +2…+6°C.

Просветитель

Аналогично, наиболее подходящим просветителем я считаю постоянно используемый мной TRANSPARENT 21.

Назначение: Позволяет непосредственно переносить изображения на поверхности, покрытые светочувствительной эмульсией POSITIV 20 или другим фоторезистом.Свойства: Придает прозрачность бумаге. Обеспечивает пропускание ультрафиолетовых лучей.Применение: Для быстрого переноса контуров рисунков и схем на подложку. Позволяет значительно упростить процесс репродуцирования и сократить временные затраты.Характеристики: Цвет: прозрачный Плотность: при 20°C 0,79 г/см3 Время высыхания: при 20°C 30 мин.Примечание: Вместо обычной бумаги с просветителем можно использовать прозрачную пленку для струйных или лазерных принтеров — в зависимости от того, на чем будем печатать фотошаблон.

Проявитель фоторезиста

Существует много различных растворов для проявления фоторезиста.

Советуют проявлять с помощью раствора «жидкое стекло». Его химический состав: Na2SiO3*5h3O. Это вещество обладает огромным числом достоинств. Наиболее важным является то, что в нем очень трудно передержать ПП — вы можете оставить ПП на не фиксированное точно время. Раствор почти не изменяет своих свойств при перепадах температуры (нет риска распада при увеличении температуры), также имеет очень большой срок хранения — его концентрация остается постоянной не менее пары лет. Отсутствие проблемы передержки в растворе позволит увеличить его концентрацию для уменьшения времени проявления ПП. Рекомендуют смешивать 1 часть концентрата с 180 частями воды (чуть более 1,7 г силиката в 200 мл воды), но возможно сделать более концентрированную смесь, чтобы изображение проявлялось примерно за 5 секунд без риска разрушения поверхности при передержке. При невозможности приобретения силиката натрия используйте углекислый натрий (Na2СO3) или углекислый калий (K2СO3).

Также рекомендуют бытовое средство для прочистки сантехники — «Крот».

Не пробовал ни первое, ни второе, поэтому расскажу, чем проявляю без каких-либо проблем уже несколько лет. Я использую водный раствор каустической соды. На 1 литр холодной воды — 7 граммов каустической соды. Если нет NaOH, применяю раствор KOH, вдвое увеличив концентрацию щелочи в растворе. Время проявления — 30-60 секунд при правильной экспозиции. Если по истечении 2 минут рисунок не проявляется (или проявляется слабо), и начинает смываться фоторезист с заготовки — значит, неправильно выбрано время экспозиции: нужно увеличивать. Если, наоборот, быстро проявляется, но смываются и засвеченные участки, и незасвеченные — либо слишком велика концентрация раствора, либо низкое качество фотошаблона (ультрафиолет свободно проходит сквозь «черное»): нужно увеличивать плотность печати шаблона.

Растворы травления меди

Лишнюю медь с печатных плат стравливают с помощью разных травителей. Среди людей, занимающихся этим дома, зачастую распространены персульфат аммония, перекись водорода + соляная кислота, раствор медного купороса + поваренная соль.

Я всегда травлю хлорным железом в стеклянной посуде. При работе с раствором нужно быть осторожным и внимательным: при попадании на одежду и предметы остаются ржавые пятна, которые с трудом удаляются слабым раствором лимонной (сок лимона) или щавелевой кислоты.

Концентрированный раствор хлорного железа подогреваем до 50-60°C, в него погружаем заготовку, стеклянной палочкой с ватным тампоном на конце аккуратно и без усилия водим по участкам, где хуже стравливается медь, — этим достигается более ровное травление по всей площади ПП. Если не выравнивать принудительно скорость, увеличивается требуемая продолжительность травления, а это со временем приводит к тому, что на участках, где медь уже стравилась, начинается подтравливание дорожек. В итоге имеем совсем не то, что хотели получить. Очень желательно обеспечить непрерывное перемешивание травильного раствора.

Химия для смывки фоторезиста

Чем проще всего смыть уже ненужный фоторезист после травления? После многократных проб и ошибок я остановился на обыкновенном ацетоне. Когда его нет — смываю любым растворителем для нитрокрасок.

Итак, делаем печатную плату

С чего начинается высококачественная печатная плата? Правильно:

Создание высококачественного фотошаблона

Для его изготовления можно воспользоваться практически любым современным лазерным или струйным принтером. Учитывая, что мы используем в рамках данной статьи позитивный фоторезист, — там, где на ПП должна остаться медь, принтер должен рисовать черным. Где не должно быть меди — принтер ничего не должен рисовать. Очень важный момент при печати фотошаблона: требуется установить максимальный полив красителя (в настройках драйвера принтера). Чем более черными будут закрашенные участки, тем больше шансов получить великолепный результат. Цвет не нужен, достаточно черного картриджа. Из той программы (рассматривать программы не будем: каждый волен выбирать сам — от PCAD до Paintbrush), в которой рисовался фотошаблон, печатаем на обычном листе бумаги. Чем выше разрешение при печати и чем качественнее бумага, тем выше будет качество фотошаблона. Рекомендую не ниже 600 dpi, бумага не должна быть сильно плотной. При печати учитываем, что той стороной листа, на которую наносится краска, шаблон будет класться на заготовку ПП. Если сделать иначе, края у проводников ПП будут размытыми, нечеткими. Даем просохнуть краске, если это был струйный принтер. Далее пропитываем бумагу TRANSPARENT 21, даем просохнуть и… фотошаблон готов.

Вместо бумаги и просветителя можно и даже очень желательно использовать прозрачную пленку для лазерных (при печати на лазерном принтере) или струйных (для струйной печати) принтеров. Учтите, что у этих пленок стороны неравнозначны: только одна рабочая. Если будете использовать лазерную печать, крайне рекомендую сделать «сухой» прогон листа пленки перед печатью — просто прогоните лист через принтер, имитируя печать, но ничего не печатая. Зачем это нужно? При печати фьюзер (печка) прогреет лист, что неизбежно приведет к его деформации. Как следствие — ошибка в геометрии ПП на выходе. При изготовлении двусторонних ПП это чревато несовпадением слоев со всеми вытекающими… А с помощью «сухого» прогона мы прогреем лист, он деформируется и будет готов к печати шаблона. При печати лист во второй раз пройдет сквозь печку, но деформация при этом будет куда менее значительной — проверено неоднократно.

Если ПП несложная, можно нарисовать ее вручную в очень удобной программе с русифицированным интерфейсом — Sprint Layout 3.0R (~650 КБ).

На подготовительном этапе рисовать не слишком громоздкие электрические схемы очень удобно в также русифицированной программе sPlan 4.0 (~450 КБ).

Так выглядят готовые фотошаблоны, распечатанные на принтере Epson Stylus Color 740:

         

Печатаем только черным, с максимальным поливом красителя. Материал — прозрачная пленка для струйных принтеров.

Подготовка поверхности ПП к нанесению фоторезиста

Для производства ПП используются листовые материалы с нанесенной медной фольгой. Самые распространенные варианты — с толщиной меди 18 и 35 мкм. Чаще всего для производства ПП в домашних условиях используются листовые текстолит (прессованная с клеем ткань в несколько слоев), стеклотекстолит (то же самое, но в качестве клея используются эпоксидные компаунды) и гетинакс (прессованная бумага с клеем). Реже — ситтал и поликор (высокочастотная керамика — в домашних условиях применяется крайне редко), фторопласт (органический пластик). Последний также применяется для изготовления высокочастотных устройств и, имея очень хорошие электротехнические характеристики, может использоваться везде и всюду, но его применение ограничивает высокая цена.

Прежде всего, необходимо убедиться в том, что заготовка не имеет глубоких царапин, задиров и тронутых коррозией участков. Далее желательно до зеркала отполировать медь. Полируем не особо усердствуя, иначе сотрем и без того тонкий слой меди (35 мкм) или, во всяком случае, добьемся разной толщины меди на поверхности заготовки. А это, в свою очередь, приведет к разной скорости вытравливания: быстрее стравится там, где тоньше. Да и более тонкий проводник на плате — не всегда хорошо. Особенно, если он длинный и по нему будет течь приличный ток. Если медь на заготовке качественная, без грехов, то достаточно обезжирить поверхность.

Нанесение фоторезиста на поверхность заготовки

Располагаем плату на горизонтальной или слегка наклоненной поверхности и наносим состав из аэрозольной упаковки с расстояния примерно 20 см. Помним, что важнейший враг при этом — пыль. Каждая частица пыли на поверхности заготовки — источник проблем. Чтобы создать однородное покрытие, распыляем аэрозоль непрерывными зигзагообразными движениями, начиная из верхнего левого угла. Не применяйте аэрозоль в избыточных количествах, так как это вызывает нежелательные подтеки и приводит к образованию неоднородного по толщине покрытия, требующего более длительного времени экспозиции. Летом при высокой температуре окружающей среды может потребоваться повторная обработка, либо необходимо распылять аэрозоль с меньшего расстояния — для уменьшения потерь от испарения. При распылении не наклоняйте баллон сильно — это приводит к повышенному расходу газа-пропеллента и как следствие — аэрозольный баллон прекращает работу, хотя в нем остается еще фоторезист. Если вы получаете неудовлетворительные результаты при аэрозольном нанесении фоторезиста, используйте центрифужное покрытие. В этом случае фоторезист наносится на плату, закрепленную на вращающемся столе с приводом 300-1000 оборотов в минуту. После окончания нанесения покрытия плата не должна подвергаться воздействию сильного света. По цвету покрытия можно приблизительно определить толщину нанесенного слоя:

  • светло-серый синий — 1-3 микрона;
  • темно-серый синий — 3-6 микрон;
  • синий — 6-8 микрон;
  • темно-синий — более 8 микрон.

На меди цвет покрытия может иметь зеленоватый оттенок.

Чем тоньше покрытие на заготовке, тем лучше результат.

Я всегда наношу фоторезист на центрифуге. В моей центрифуге скорость вращения 500-600 об/мин. Крепление должно быть простым, зажим производится только по торцам заготовки. Закрепляем заготовку, запускаем центрифугу, брызгаем на центр заготовки и наблюдаем, как фоторезист тончайшим слоем растекается по поверхности. Центробежными силами излишки фоторезиста будут сброшены с будущей ПП, поэтому очень рекомендую предусмотреть защитную стенку, чтобы не превратить рабочее место в свинарник. Я использую обыкновенную кастрюлю, в днище которой по центру сделано отверстие. Через это отверстие проходит ось электродвигателя, на которой установлена площадка крепления в виде креста из двух алюминиевых реек, по которым «бегают» уши зажима заготовок. Уши сделаны из алюминиевых уголков, зажимаемых на рейке гайкой типа «барашек». Почему алюминий? Маленькая удельная масса и, как следствие, меньше биения при отклонении центра массы вращения от центра вращения оси центрифуги. Чем точнее отцентрировать заготовку, тем меньше будут биения за счет эксцентриситета массы и тем меньше усилий потребуется для жесткого крепления центрифуги к основанию.

Фоторезист нанесен. Даем ему просохнуть в течение 15-20 минут, переворачиваем заготовку, наносим слой на вторую сторону. Даем еще 15-20 минут на сушку. Не забываем о том, что попадание прямого солнечного света и пальцев на рабочие стороны заготовки недопустимы.

Дубление фоторезиста на поверхности заготовки

Помещаем заготовку в духовку, плавно доводим температуру до 60-70°C. При этой температуре выдерживаем 20-40 минут. Важно, чтобы поверхностей заготовки ничто не касалось — допустимы только касания торцов.

Выравнивание верхнего и нижнего фотошаблонов на поверхностях заготовки

На каждом из фотошаблонов (верхний и нижний) должны быть метки, по которым на заготовке нужно сделать 2 отверстия — для совмещения слоев. Чем дальше друг от друга метки, тем выше точность совмещения. Обычно я их ставлю по диагонали шаблонов. По этим меткам на заготовке с помощью сверлильного станка строго под 90° сверлим два отверстия (чем тоньше отверстия, тем точнее совмещение — я использую сверло 0,3 мм) и совмещаем по ним шаблоны, не забывая о том, что шаблон должен прикладываться к фоторезисту той стороной, на которую была произведена печать. Прижимаем шаблоны к заготовке тонкими стеклами. Стекла предпочтительнее всего использовать кварцевые — они лучше пропускают ультрафиолет. Еще лучшие результаты дает оргстекло (плексиглас), но оно имеет неприятное свойство царапаться, что неизбежно скажется на качестве ПП. При небольших размерах ПП можно использовать прозрачную крышку от упаковки компакт-диска. За неимением таких стекол можно использовать и обычное оконное, увеличив время экспозиции. Важно, чтобы стекло было ровным, обеспечивая ровное прилегание фотошаблонов к заготовке, иначе невозможно будет получить качественные края дорожек на готовой ПП.

Заготовка с фотошаблоном под оргстеклом. Используем коробку из-под компакт-диска.
Экспозиция (засветка)

Время, требуемое для экспонирования, зависит от толщины слоя фоторезиста и интенсивности источника света. Лак-фоторезист POSITIV 20 чувствителен к ультрафиолетовым лучам, максимум чувствительности приходится на участок с длиной волны 360-410 нм.

Лучше всего экспонировать под лампами, диапазон излучения которых находится в ультрафиолетовой области спектра, но если такой лампы у вас нет — можно использовать и обычные мощные лампы накаливания, увеличив время экспозиции. Не начинайте засветку до момента стабилизации освещения от источника — необходимо, чтобы лампа прогрелась в течение 2-3 минут. Время экспозиции зависит от толщины покрытия и обычно составляет 60-120 секунд при расположении источника света на расстоянии 25-30 см. Используемые пластины стекла могут поглощать до 65% ультрафиолета, поэтому в таких случаях необходимо увеличивать время экспозиции. Лучшие результаты достигаются при использовании прозрачных плексигласовых пластин. При применении фоторезиста с длительным сроком хранения время экспонирования может потребоваться увеличить вдвое — помните: фоторезисты подвержены старению!

Примеры использования различных источников света:

Источник светаВремяРасстояниеПримечание
ртутная лампа Philips HPR1253 мин.30 смпокрытие из кварцевого стекла толщиной 5 мм
ртутная лампа 1000W1,5 мин.50 смпокрытие из кварцевого стекла толщиной 5 мм
ртутная лампа 500W2,5 мин.50 смпокрытие из кварцевого стекла толщиной 5 мм
кварцевая лампа 300W3-4 мин.30 смпокрытие из кварцевого стекла толщиной 5 мм
солнечный свет5-10 мин.лето, в полдень, безоблачнопокрытие из кварцевого стекла толщиной 5 мм
лампы Osram-Vitalux 300W4-8 мин.40 смпокрытие из кварцевого стекла толщиной 8 мм
Лампы УФ-излучения

Каждую сторону экспонируем по очереди, после экспозиции даем выстояться заготовке 20-30 минут в затемненном месте.

Проявление экспонированной заготовки

Проявляем в растворе NaOH (каустическая сода) — подробнее смотрите в начале статьи — при температуре раствора 20-25°C. Если до 2 минут проявления нет — мало время экспозиции. Если проявляется хорошо, но смываются и полезные участки — вы перемудрили с раствором (слишком велика концентрация) или слишком велико время экспозиции при данном источнике излучения или фотошаблон низкого качества — недостаточно насыщенный печатаемый черный цвет позволяет ультрафиолету засвечивать заготовку.

При проявлении я всегда очень бережно, без усилий «катаю» ватным тампоном на стеклянной палочке по тем местам, где должен смыться засвеченный фоторезист, — это ускоряет процесс.

Промывка заготовки от щелочи и остатков отслоившегося засвеченного фоторезиста

Я делаю это под водопроводным краном — обычной водопроводной водой.

Повторное дубление фоторезиста

Помещаем заготовку в духовку, плавно поднимаем температуру и при температуре 60-100°C выдерживаем 60-120 минут — рисунок становится прочным и твердым.

Проверка качества проявления

Кратковременно (на 5-15 секунд) погружаем заготовку в подогретый до температуры 50-60°C раствор хлорного железа. Быстро промываем проточной водой. В местах, где фоторезиста нет, начинается интенсивное травление меди. Если где-то случайно остался фоторезист, аккуратно механически удаляем его. Удобно это делать обычным или офтальмологическим скальпелем, вооружившись оптикой (очки для пайки, лупа часовщика, лупа на штативе, микроскоп).

Травление

Травим в концентрированном растворе хлорного железа с температурой 50-60°C. Желательно обеспечить непрерывную циркуляцию травильного раствора. Плохо стравливающиеся места аккуратно «массируем» ватным тампоном на стеклянной палочке. Если хлорное железо свежеприготовленное, время травления обычно не превышает 5-6 минут. Промываем заготовку проточной водой.

          Плата вытравлена

Как готовить концентрированный раствор хлорного железа? Растворяем в слегка (до 40°C) подогретой воде FeCl3 до тех пор, пока не перестанет растворяться. Фильтруем раствор. Хранить нужно в затемненном прохладном месте в герметичной неметаллической упаковке — в стеклянных бутылках, например.

Удаление уже ненужного фоторезиста

Смываем фоторезист с дорожек ацетоном или растворителем для нитрокрасок и нитроэмалей.

Сверление отверстий

Диаметр точки будущего отверстия на фотошаблоне желательно подбирать таким, чтобы впоследствии было удобно сверлить. Например, при требуемом диаметре отверстия 0,6-0,8 мм диаметр точки на фотошаблоне должен быть около 0,4-0,5 мм — в таком случае сверло будет хорошо центроваться.

Желательно использовать сверла, покрытые карбидом вольфрама: сверла из быстрорежущих сталей очень быстро изнашиваются, хотя сталь можно применять для сверления одиночных отверстий большого диаметра (больше 2 мм), так как сверла с напылением карбида вольфрама такого диаметра слишком дорогие. При сверлении отверстий диаметром менее 1 мм лучше использовать вертикальный станок, иначе ваши сверла будут быстро ломаться. Если сверлить ручной дрелью — неизбежны перекосы, ведущие к неточной стыковке отверстий между слоями. Движение сверху вниз на вертикальном сверлильном станке самое оптимальное с точки зрения нагрузки на инструмент. Карбидные сверла изготавливают с жестким (т.е. сверло точно соответствует диаметру отверстия) или с толстым (иногда называют «турбо-») хвостовиком, имеющим стандартный размер (обычно, 3,5 мм). При сверлении сверлами с карбидным напылением важно жестко закрепить ПП, так как такое сверло при движении вверх может приподнять ПП, перекосить перпендикулярность и вырвать фрагмент платы.

Сверла маленьких диаметров обычно вставляются либо в цанговый патрон (различных размеров), либо в трехкулачковый патрон. Для точной фиксации закрепление в трехкулачковом патроне — не самый лучший вариант, и маленький размер сверла (меньше 1 мм) быстро делает желобки в зажимах, теряя хорошую фиксацию. Поэтому для сверл диаметром меньше 1 мм лучше использовать цанговый патрон. На всякий случай приобретите дополнительный набор, содержащий запасные цанги для каждого размера. Некоторые недорогие сверла производят с пластиковыми цангами — выбросите их и купите металлические.

Для получения приемлемой точности необходимо правильно организовать рабочее место, то есть, во-первых, обеспечить хорошее освещение платы при сверлении. Для этого можно использовать галогенную лампу, прикрепив ее на штативе для возможности выбирать позицию (освещать правую сторону). Во-вторых, поднять рабочую поверхность примерно на 15 см выше столешницы для лучшего визуального контроля над процессом. Неплохо было бы удалять пыль и стружку в процессе сверления (можно использовать обычный пылесос), но это не обязательно. Надо отметить, что пыль от стекловолокон, образующаяся при сверлении, очень колкая и при попадании на кожу вызывает ее раздражение. И, наконец, при работе очень удобно пользоваться ножным включателем сверлильного станка.

Типичные размеры отверстий:

  • переходные отверстия — 0,8 мм и менее;
  • интегральные схемы, резисторы и т.д. — 0,7-0,8 мм;
  • большие диоды (1N4001) — 1,0 мм;
  • контактные колодки, триммеры — до 1,5 мм.

Старайтесь избегать отверстий диаметром менее 0,7 мм. Всегда держите не менее двух запасных сверл 0,8 мм и менее, так как они всегда ломаются именно в тот момент, когда вам срочно надо сделать заказ. Сверла 1 мм и больше намного надежнее, хотя и для них неплохо бы иметь запасные. Когда вам надо изготовить две одинаковые платы, то для экономии времени их можно сверлить одновременно. При этом необходимо очень аккуратно сверлить отверстия в центре контактной площадки около каждого угла ПП, а для больших плат — отверстия, расположенные близко от центра. Положите платы друг на друга и, используя центрующие отверстия 0,3 мм в двух противоположных углах и штифты в качестве колышков, закрепите платы относительно друг друга.

При необходимости можно зенковать отверстия сверлами большего диаметра.

Лужение меди на ПП

Если нужно облудить дорожки на ПП, можно воспользоваться паяльником, мягким низкоплавким припоем, спиртоканифольным флюсом и оплеткой коаксиального кабеля. При больших объемах лудят в ванных, наполненных низкотемпературными припоями с добавлением флюсов.

Наиболее популярным и простым расплавом для лужения является легкоплавкий сплав «Розе» (олово — 25%, свинец — 25%, висмут — 50%), температура плавления которого 93-96°C. Плату при помощи щипцов помещают под уровень жидкого расплава на 5-10 секунд и, вынув, проверяют, вся ли медная поверхность покрыта равномерно. При необходимости операцию повторяют. Сразу же после вынимания платы из расплава его остатки удаляют либо с помощью резинового ракеля, либо резким встряхиванием в направлении, перпендикулярном плоскости платы, удерживая ту в зажиме. Другим способом удаления остатков сплава «Розе» является нагрев платы в термошкафу и встряхивание. Операция может проводиться повторно для достижения монотолщинного покрытия. Чтобы предотвратить окисление горячего расплава, в емкость для лужения добавляют глицерин, так чтобы его уровень покрывал расплав на 10 мм. После окончания процесса плата отмывается от глицерина в проточной воде. Внимание! Данные операции предполагают работу с установками и материалами, находящимися под действием высокой температуры, поэтому для предотвращения ожога необходимо пользоваться защитными перчатками, очками и фартуками.

Операция лужения сплавом олово-свинец протекает аналогично, но более высокая температура расплава ограничивает область применения данного способа в условиях кустарного производства.

Хочу поделиться еще одним способом лужения при помощи сплава «Розе», также проверенным на практике. Обыкновенная водопроводная вода наливается в консервную банку или небольшую мисочку, добавляется немного лимонной кислоты или уксуса, ставится на плиту. В кипящую воду помещается плата, высыпается несколько застывших капель сплава «Розе», которые тут же плавятся в кипящей воде, и ваткой, намотанной на длинный пинцет или палочку (чтобы не обжечься паром), аккуратно размазываются по дорожкам. По завершении процесса вода сливается, а застывшие остатки сплава складываются в какую-либо емкость до следующего использования.

Не забудьте после лужения очистить плату от флюса и тщательно обезжирить.

Если у вас большое производство — можно использовать химическое лужение.

Нанесение защитной маски

Операции с нанесением защитной маски в точности повторяют все, что было написано выше: наносим фоторезист, сушим, дубим, центруем фотошаблоны масок, экспонируем, проявляем, промываем и еще раз дубим. Само собой, пропускаем шаги с проверкой качества проявления, травлением, удалением фоторезиста, лужением и сверлением. В самом конце дубим маску в течение 2 часов при температуре около 90-100°C — она станет прочной и твердой, как стекло. Образованная маска защищает поверхность ПП от внешнего воздействия и предохраняет от теоретически возможных замыканий при эксплуатации. Также она играет не последнюю роль при автоматической пайке — не дает «сесть» припою на соседние участки, замыкая их.

Все, двусторонняя печатная плата с маской готова

Мне приходилось таким образом делать ПП с шириной дорожек и шагом между ними до 0,05 мм (!). Но это уже ювелирная работа. А без особых усилий можно делать ПП с шириной дорожки и шагом между ними 0,15-0,2 мм.

На плату, показанную на фотографиях, я маску не наносил — не было такой необходимости.

        Печатная плата в процессе монтажа на нее компонентов

А вот и само устройство, для которого делалась ПП:

Это сотовый телефонный мост, позволяющий в 2-10 раз снизить стоимость услуг мобильной связи — ради этого стоило возиться с ПП ;). ПП с распаянными компонентами находится в подставке. Раньше там было обыкновенное зарядное устройство для аккумуляторов мобильного телефона.

Дополнительная информация

Металлизация отверстий

В домашних условиях можно выполнить даже металлизацию отверстий. Для этого внутренняя поверхность отверстий обрабатывается 20-30-процентным раствором азотнокислого серебра (ляпис). Затем поверхность очищается ракелем и плата сушится на свету (можно использовать УФ-лампу). Суть этой операции в том, что под действием света азотнокислое серебро разлагается, и на плате остаются вкрапления серебра. Далее производится химическое осаждение меди из раствора: сернокислая медь (медный купорос) — 2 г, едкий натр — 4 г, нашатырный спирт 25-процентный — 1 мл, глицерин — 3,5 мл, формалин 10-процентный — 8-15 мл, вода — 100 мл. Срок хранения приготовленного раствора очень мал — готовить нужно непосредственно перед применением. После осаждения меди плату промывают и сушат. Слой получается очень тонким, его толщину необходимо увеличить до 50 мкм гальваническим способом.

Раствор для нанесения медного покрытия гальваническим способом: На 1 литр воды 250 г сульфата меди (медный купорос) и 50-80 г концентрированной серной кислоты. Анодом служит медная пластинка, подвешенная параллельно покрываемой детали. Напряжение должно быть 3-4 В, плотность тока — 0,02-0,3 A/см2, температура — 18-30°C. Чем меньше ток, тем медленнее идет процесс металлизации, но тем качественнее получаемое покрытие.

Фрагмент печатной платы, где видна металлизация в отверстии
Самодельные фоторезисты

Фоторезист на основе желатина и бихромата калия: Первый раствор: 15 г желатина залить 60 мл кипяченой воды и оставить для набухания на 2-3 часа. После набухания желатина поставить емкость на водяную баню при температуре 30-40°C до полного растворения желатина. Второй раствор: в 40 мл кипяченой воды растворить 5 г двухромовокислого калия (хромпик, порошок ярко-оранжевого цвета). Растворять при слабом рассеянном освещении. В первый раствор при интенсивном перемешивании влить второй. В полученную смесь пипеткой добавить несколько капель нашатырного спирта до получения соломенного цвета. Фотоэмульсия наносится на подготовленную плату при очень слабом освещении. Плата сушится до «отлипа» при комнатной температуре в полной темноте. После экспонирования плату при слабом рассеянном освещении промыть в теплой проточной воде до удаления незадубленного желатина. Чтобы лучше оценить результат, можно окрасить участки с неудаленным желатином раствором марганцовки.

Усовершенствованный самодельный фоторезист: Первый раствор: 17 г столярного клея, 3 мл водного раствора аммиака, 100 мл воды оставить для набухания на сутки, затем греть на водяной бане при 80°C до полного растворения. Второй раствор: 2,5 г бихромата калия, 2,5 г бихромата аммония, 3 мл водного раствора аммиака, 30 мл воды, 6 мл спирта. Когда первый раствор остынет до 50°C, при энергичном перемешивании влейте в него второй раствор и полученную смесь профильтруйте (эту и последующие операции необходимо проводить в затемненном помещении, солнечный свет недопустим!). Эмульсия наносится при температуре 30-40°C. Дальше — как в первом рецепте.

Фоторезист на основе бихромата аммония и поливинилового спирта: Готовим раствор: поливиниловый спирт — 70-120 г/л, бихромат аммония — 8-10 г/л, этиловый спирт — 100-120 г/л. Избегать яркого света! Наносится в 2 слоя: первый слой — сушка 20-30 минут при 30-45°C — второй слой — сушка 60 минут при 35-45°C. Проявитель — 40-процентный раствор этилового спирта.

Химическое лужение

Прежде всего, плату необходимо декапировать, чтобы удалить образовавшийся окисел меди: 2-3 секунды в 5-процентном растворе соляной кислоты с последующей промывкой в проточной воде.

Достаточно просто осуществлять химическое лужение погружением платы в водный раствор, содержащий хлорное олово. Выделение олова на поверхности медного покрытия происходит при погружении в такой раствор соли олова, в котором потенциал меди более электроотрицателен, чем материал покрытия. Изменению потенциала в нужном направлении способствует введение в раствор соли олова комплексообразующей добавки — тиокарбамида (тиомочевины). Такого типа растворы имеют следующий состав (г/л):

1234
Двухлористое олово SnCl2*2h3O5,55-82010
Тиокарбамид CS(Nh3)25035-50--
Серная кислота h3SO4-30-40--
Винная кислота C4H6O635---
Каустическая сода NaOH-6--
Молочнокислый натрий--200-
Сернокислый алюминий-аммоний (алюмоаммонийные квасцы)---300
Температура, °C60-7050-6018-2518-25

Среди перечисленных наиболее распространены растворы 1 и 2. Иногда в качестве поверхностно-активного вещества для 1-го раствора предлагается использование моющего средства «Прогресс» в количестве 1 мл/л. Добавление во 2-й раствор 2-3 г/л нитрата висмута приводит к осаждению сплава, содержащего до 1,5% висмута, что улучшает паяемость покрытия (препятствует старению) и многократно увеличивает срок хранения до пайки компонентов у готовой ПП.

Для консервации поверхности применяют аэрозольные распылители на основе флюсующих композиций. Нанесенный на поверхность заготовки лак после высыхания образует прочную гладкую пленку, которая препятствует окислению. Одним из популярных веществ является «SOLDERLAC» фирмы Cramolin. Последующая пайка проводится прямо по обработанной поверхности без дополнительного удаления лака. В особо ответственных случаях пайки лак можно удалить спиртовым раствором.

Искусственные растворы для лужения ухудшаются с течением времени, особенно при контакте с воздухом. Поэтому если у вас большие заказы бывают нечасто, то старайтесь приготовить сразу небольшое количество раствора, достаточное для лужения нужного количества ПП, а остатки раствора храните в закрытой емкости (идеально подходят бутылки типа используемых в фотографии, не пропускающие воздух). Также необходимо защищать раствор от загрязнения, которое может сильно ухудшить качество вещества.

В заключение хочу сказать, что все же лучше использовать готовые фоторезисты и не заморачиваться с металлизацией отверстий в домашних условиях — великолепных результатов все равно не получите.

www.ixbt.com


© 2005-2018, Национальный Экспертный Совет по Качеству.

Высокое качество системы сертификации Центрстройэкспертиза-Тест подтверждено ВОК



Ассоциация СРО Единство